Features and Benefits

10 MHz Clipped Sine Wave VCTCXO 3.3V Supply +/- 1ppm stability over -30°C to +85°C 2.5mm x 2.0mm x 0.9mm package SMD Ceramic Enclosure

Typical Applications

Wireless Communications GPS Base Stations Point-to-Point Radios Broadband Access Test Equipment Handsets

Description

The TCXO2520 family offers low noise compensation techniques combined with aggressive conditioning processes resulting in outstanding long term stability, tightly distributed performance parameters, and superior long term reliability.

Mechanical Drawing & Pin Connections

PIN NO.	CONNECTION
1	Voltage Control
2	No Connection
3	Ground
4	Output Frequency
5	No Connection
6	Supply Voltage

MD140021-1 Unit = mm

Rev.1

Specifications

Oscillator Specification		C 1000	Condition		Value		Unit	Nete		
		Sym	Condition	Min.	Тур.	Max.	Unit	Note		
Operational Frequency Range		Fnom			10.000000		MHz			
			Output Voltage Level	0.8			V			
Clipped Sine			Output Voltage Level			2.0	V			
Wave	Output Load				10 // 10		K pF			
	Start Time					2.0	ms	Milli-seconds		
Power Supply										
Voltage					3.3		V			
Supply Current	current load					2.0	mA			
Voltage Control										
Control Voltage				0.5		2.5	V			
Pulling Range				± 5.0			ppm			
Input Impedance				500			kΩ			
Frequency Stabili	ty									
Versus temperature			-30°C to +85°C	-1.0		+1.0	ppm			
Initial Accuracy				-1.0		+1.0	ppm			
Versus 5% change in supply voltage				-0.2		+0.2	ppm			
Versus 10% change in load				-0.2		+0.2	ppm			
Aging per year			First year @ 25°C	-1.0		+1.0	ppm			
SSB Phase noise @ 10.000 MHz			10 Hz		-90.0		dBc/Hz			
			100 Hz		-115.0					
			1000 Hz		-135.0					
			10000Hz		-150.0					
Environmental Co	onditions	1								
Operating temperature range		-30°C to +85°C								
Storage temperature range		-55°C to +125°C								
Mechanical Shock MIL-		MIL-ST	MIL-STD-883 Method 2002							
Mechanical Vibration		MIL-STD-883 Method 2007								
Temperature Cycle		MIL-STD 883 Method 1010								
Solderability		MIL-STD-883 Method 2003								
Fine and Gross Leak		MIL-STD-883 Method 1014								
Resistance to Solvents		MIL-STD-883 Method 2015								