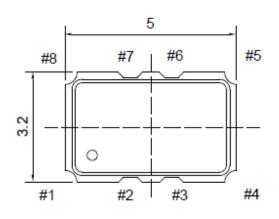
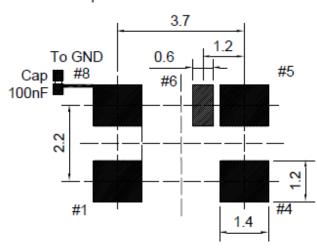
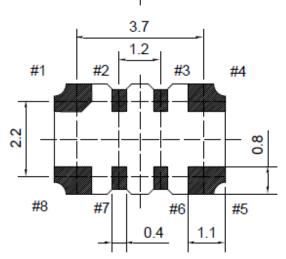
Features and Benefits

Better than ±0.2ppm from -40°C to +85°C 3.3V supply; 10mA maximum Less than -155dBc/Hz @ 100KHz

Typical Applications


Mobile Radio Communication Equipment


Mechanical Drawing & Pin Connections


Drawing No:

MD150017-4

Footprint

Pin Function

#1	Vc(Voltage Control)
#2	N.C.
#3	N.C.
#4	GND
#5	Output
#6	Tri-state or N.C.
#7	N.C.
#8	Vcc

Unit: mm 1mm=0.039inch

Specifications

Oscillator	Comm	O a malistia m	Value			I I mit	Nata	
Specification	Sym	Condition	Min.	Тур.	Max.	Unit	Note	
requency Range F ₀				25.00		MHz		
RF Output								
Output Wave Form				Clipped Sine wave			> 1.0	
Load		10 pF		10		kohm	±5%	
Start Up Time				< 2		ms		
Tri-state Functions								
Pin #5 -> oscillation		Pin #6		≥ 2.1		V	open	
Pin #5 -> high impedance		Pin #6		≤ 0.9		V	GND	
Power Supply								
Voltage	V _{cc}			3.3		V		
Power Consumption				<3		mA		
Frequency Control								
Electronic Frequency Control	ΔF	Desitive alone		E		222		
(EFC) Range	ΔΓ	Positive slope		> ±5		ppm		
EFC Voltage	V _C		+1.5			V	±1.0V	
EFC Input Impedance			> 100			kohm		
Frequency Stability								
VS. Tolerance (ex-factory)		@25°C	0		1.00	ppm		
VS. Temperature		Over -40°C to +85°C			≤±0.20			
$(F_{MAX} + \dot{F}_{MIN}) / 2$		Over +85°C to +95°C			≤±0.50	ppm		
VS ±5% change in supply voltage					≤±0.05	ppm		
VS. ±10% change in load					≤±0.05	ppm		
Aging					≤±1.00	ppm	First year	
Frequency slope vs. temperature Over operating temperature					≤±0.05	ppm/°C		
Short term stability ADEV		t = 1 sec			< 1 x 10 ⁻¹⁰			
Phase Noise					10			
Thase Noise		1 KHz		<-135				
Phase noise @ 25.0 MHz		10 KHz		< -145		dBc/Hz		
Filase floise @ 25.0 Wil iz		100 KHz		< -155		UDC/11Z		
Environmental Conditions		TOO INTIZ		× -100				
Parameter Conditions		Reference Std.						
Operating temperature range		-40°C to +95°C						
Storage temperature range		-55°C to +105°C						
Reflow conditions per JEDEC J-STD	260°C maximum (during 10 sec. max.)							
Moisture sensitivity	Level 1 (unlimited)							
Packaging Units		1000 50	20)					
Packaging Units Tape and Reel (500 or 1000 pcs)								

Pin Function	
#1	V _C (Voltage Control)
#2	Do not connect
#3	Do not connect
#4	GND
#5	OUTPUT
#6	Tri-state or do not connect
#7	Do not connect
#8	V _{CC}

TCXO5300Z-ET-25MHz-A-V
Extended Temperature SMD TCXO

TCXO5300Z-ET-25MHz-A-V
Extended Temperature SMD TCXO

Environmental Conditions

Test	IEC 60068 Part	IEC 60679-1 Clause	MIL- STD- 202G Method	MIL- STD- 810F Method	MIL- PRF- 55310D Clause	Test Conditions (IEC)
Sealing tests (if applicable)	2-17	5.6.2	112E		3.6.1.2	Gross leak: Test Qc Fine lead: TstQk
Solderability Resistance to soldering heat	2-20 2-58	5.6.3	208H 210F		3.6.52 3.6.48	Test Ta, method 1 Test Td ₁ , method 2 Test Td ₂ , method 2
Shock*	2-27	5.6.8	213B	516.4	3.6.40	Test Ea, 2 x per axis 100 g. 6 ms half-sine pulse
Vibration sinusoidal*	2-6	5.6.7.1	201A 204D	516.4-4	3.6.38.1 3.6.38.2	Test F _C , 30 min per axis, 1 oct/min 10 Hz – 55 Hz 0.75mm; 55 Hz – 2 kHz, 10g
Vibration random*	2-64	5.6.7.3	214A	514.5	3.6.38.3 3.6.38.4	Test Fdb
Endurance tests -Aging -Extended aging		5.7.1 5.7.2	108A		4.8.35	30 days @ 85°C 1000 h, 2000 h, 8000 h @ 85°C

Other environmental conditions on request

Handling Precautions

Flux Residue Resistance

Yes, even an unclean board can affect analog circuit performance

Be aware that if the circuit has very high resistances – even in the low $M\Omega$ – special attention may need to be paid to cleaning. A finished assembly may be adversely affected by flux or cleansing residue. The electronics industry in the past few years has joined the rest of the world in becoming environmentally responsible. Hazardous chemicals are being removed from the manufacturing process – including flux that has to be cleaned with organic solvents. Water-soluble fluxes are becoming more common, but water itself can become contaminated easily with impurities. These impurities will lower the insulation characteristics of the PCB substrate. It is vitally important to clean with freshly distilled water every time a high-impedance circuit is cleaned. There are applications that may call for the older organic influxes and solvents, such as very low power battery powered equipment with resistors in the 10s of $M\Omega$ range. Nothing can beat a good vapor defluxing machine for ensuring the board is clean.