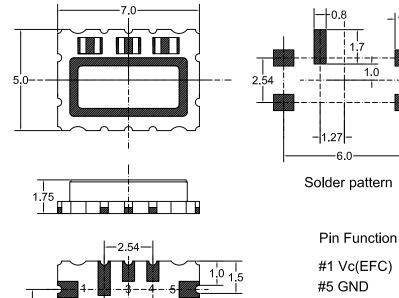
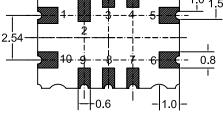


2550 Gray Falls Dr., Suite#128, Houston, TX, 77077 USA TEL: 1-281-870-8822 EMAIL:Sales@DynamicEng.com


Features and Benefits

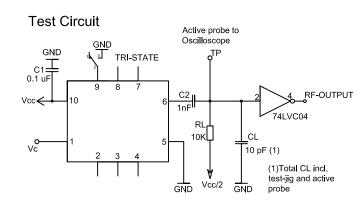

Better than ±0.8ppm from -55°C to +85°C 3.3V supply; 2mA maximum Less than -140dBc/Hz @ 1KHz offset

Typical Applications

Mobile Radio **Communication Equipments**

Mechanical Drawing & Pin Connections

#1 Vc(EFC) #6 Output #9 NC or E/D #10 Vcc

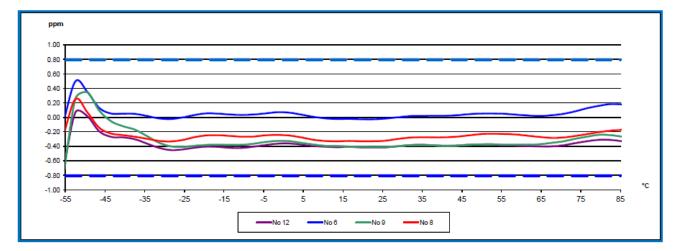

Do not connect #2, #3, #4, #7, #8

1.4

1.2

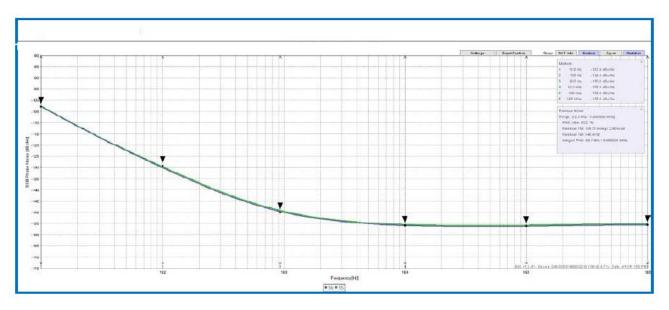
Unit: mm 1mm=0.0394inch H7 LC+) \$\$9 HN!%\$A < n!5 !J Pã @Ûcæàããc ÁÒ¢c^} å^åÁ/^{] ^¦æc ¦^Á/ÔÝU

Drawing No:MD150075-3


2550 Gray Falls Dr., Suite#128, Houston, TX, 77077 USA TEL: 1-281-870-8822 EMAIL:Sales@DynamicEng.com

Specifications

Oscillator	Sym	Condition	Value			Unit	Note		
Specification			Min.	Тур.	Max.				
Nominal Frequency	F ₀			10.00		MHz			
RF Output	1								
Output Wave Form		V _{p-p} >0.8	Clipped Sine Wave						
Load		±10%		10 10		kΩ pF			
Power Supply						· · ·			
Voltage	V _{cc}			3.3		V			
Current Consumption				<2		mA			
Frequency Control	1				1	· · ·			
Electronic Frequency Control (EFC) Range	ΔF			>±5		ppm			
EFC Control V _c		Positive slope	+1.5		V	±1.0 V			
Frequency Slope		Over operating temperature	≤0.05		ppm/°C				
		Pin #6 -> Oscillation		≥2.3 open		V	Pin #9		
Tri-State Function		Pin #6 ->		≤0.9					
		high impedance		GND		V	Pin #9		
Frequency Stability	1				1	· · ·			
VS. Tolerance		@ +25°C	0		1.0	ppm			
VS. Temperature Reference to (F _{MAX} +F _{MIN})/2		Over -55°C to +85°C		≤±0.8		ppm			
VS Supply Voltage Change Reference to frequency at nominal supply		±5%		≤±0.1		ppm			
VS.Load Change Reference to frequency at nominal load		±10%		≤±0.1		ppm			
		1 st year		≤±1.0 ≤±3.0					
Aging		Over 5 years	-			ppm			
Short Term Stability ADEV		T = 1 s		<1 x 10 ⁻¹⁰					
Phase Noise									
		@ 10 Hz		-90					
		@ 100 Hz		-120		-			
Phase noise@ 10 MHz	-	@ 1 kHz		-140		dBc/Hz			
carrier frequency		@ 10 kHz		-153					
		@ 100 kHz		-155		1			
Environmental Conditions	·				I				
Parameter	Reference Std.								
Operating temperature range				-55°C to +85°C					
Storage temperature range				-55°C to +105°C					
Reflow Profiles as per IPC/JEDEC J-STD-020C				≤260°C over 10 sec. max					
Moisture Sensitivity			Level 1 (unlimited)						



2550 Gray Falls Dr., Suite#128, Houston, TX, 77077 USA TEL: 1-281-870-8822 EMAIL:Sales@DynamicEng.com

Frequency Deviation vs. Temperature

Phase Noise @ 10 MHz Carrier Frequency

2550 Gray Falls Dr., Suite#128, Houston, TX, 77077 USA TEL: 1-281-870-8822 EMAIL:Sales@DynamicEng.com

Test	IEC 60068 Part 	IEC 60679-1 Clause	MIL- STD- 202G Method	MIL- STD- 810F Method	MIL- PRF- 55310D Clause	Test Conditions (IEC)
Sealing Tests (if applicable)	2-17	5.6.2	112E		3.6.1.2	Gross leak: Test Qc. Fine leak. Test Qk
Solderablility Resistance to Soldering Heat	2-20 2-58	5.6.3	208H 210F		3.6.52 3.6.48	Test Ta method 1 Test Td ₁ method 2 Test Td ₂ method 2
Shock	2-27	5.6.8	213B	516.4	3.6.40	Test Ea, 3 x per axis, 100 g 6 ms half-sine pulse
Vibration Sinusoidal	2-6	5.6.7.1	201A 204D	516.4-4	3.6.38.1 3.6.38.2	Test Fc, 30 min per axis, 1 oct/min 10 Hz – 55 Hz 0.75 mm; 55 Hz – 2 kHz 10g
Vibration Random	2-64	5.6.7.3	214A	514.5	3.6.38.3 3.6.38.4	Test Fdb
Endurance Tests - Aging - Extended Aging		5.7.1 5.7.2	108A		4.8.35	30 days @ 85°C 1000 h, 2000 h, 8000 h @ 85°C

Environmental Conditions

Handling Precautions

Flux Residue Resistance

Yes, even an unclean board can affect analog circuit performance.

Be aware if the circuit has very high resistances – even in the low $M\Omega$ - special attention may need to be paid to cleaning. A finished assembly may be adversely affected by flux or cleansing residue. The electronics industry in the past few years has joined the rest of the world in becoming environmentally responsible. Hazardous chemicals are being removed from the manufacturing process – including flux that has to be cleaned with organic solvents. Water-soluble fluxes are becoming more common, but water itself can become contaminated easily with impurities. These impurities will lower the insulation characteristics of the PCB substrate. It is vitally important to clean with freshly distilled water every time a high-impedance circuit is cleaned. There are applications that may call for the older organic fluxes and solvents, such as very low power battery powered equipment with resistors in the 10s of M Ω range. Nothing can beat a good vapor defluxing machine for ensuring that the board is clean