

Dynamic Engineers Inc.

2550 Gray Falls Dr., Suite#128, Houston, TX, 77077 USA TEL: 1-281-870-8822 EMAIL:Sales@DynamicEng.com

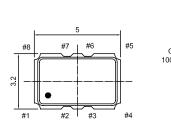
Features and Benefits

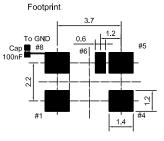
Ultra-High Stability (UHS) ±100 ppb Less than 0.1 ppb Alla deviation

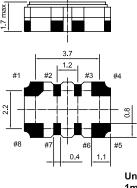
Typical Applications

High reliability manpack and hand-held VHF-UHF mobile radio systems Small cell mobile communications such as WCDMA, TD-SCDMA, CMDA2000, WiMax, and LTE cell systems standards

Description

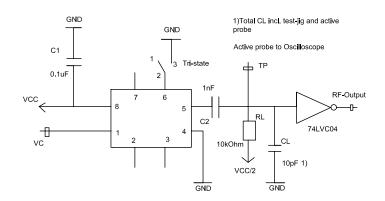

Next generation compensation IC technology used in conjunction with precision resonator designand processing techniques.


Mechanical Drawing & Pin Connections


Drawing No:MD150017-4

H7LC)'\$\$N!I <G!%\$'\$A<n

Ultra-High Stability TCXO


#1	Vc(Voltage Contro
#2	N.C.
#3	N.C.
#4	GND
#5	Output
#6	Tri-state or N.C.
#7	N.C.

Vcc

Pin Function

#8

Dynamic Engineers Inc.

2550 Gray Falls Dr., Suite#128, Houston, TX, 77077 USA TEL: 1-281-870-8822 EMAIL:Sales@DynamicEng.com

Specifications

Oscillator	0	Condition	Value			1 In it
Specification	Sym	Condition	Min.	Тур.	Max.	Unit
Nominal Frequency	F ₀			10.0		MHz
Output Wave Form			C	lipped Sine way	/e	
Output Load		±5%		10/10		kΩ//pF
Output Level		Vp-р		>1.0		
Supply Voltage	V _{cc}			+3.3		V
Current Consumption				<2.0		mA
Electronic Frequency Control (EFC) Range	ΔF	Positive slope		>±5.0		ppm
EFC Voltage	Vc	±1.0V		+1.5		V
EFC Input Impedance				>100		kΩ
Start Up Time				< 2.0		mA
Tri-State Function		Pin #5 > oscillation Pin #5 > high impedance		Pin #6 ≥ 2.1 Pin #6 ≤ 0.9		V or open V or GND
VS. Tolerance ex. factory		@25°C	0.0		1.0	ppm
VS. Temperature	(F _{MAX} +F _{MIN})/2	Over -40°C to +85°C		≤±0.10		ppm
VS ±5% change in supply voltage		Reference to frequency at nominal supply		≤±0.05		ppm
VS. ±10% change in load		Reference to frequency at nominal load		≤±0.05		ppm
VS. Aging		1 st year		≤±0.80		ppm
Frequency slope vs. temperature		Over operating temperature		≤0.05		ppm/°C
Short Term Stability ADEV		T = 1 sec		<1 x 10 ⁻¹⁰		
Phase noise @ 10.0 MHz		@ 1kHz @ 10kHz @100 kHz		<-140 <-150 <-155		dBc/Hz

Dynamic Engineers Inc.

2550 Gray Falls Dr., Suite#128, Houston, TX, 77077 USA TEL: 1-281-870-8822 EMAIL:Sales@DynamicEng.com H7 LC)' \$\$N!I < G!%'\$A<n Ultra-High Stability TCXO

Environmental Conditions						
Parameter	Condition					
Operating temperature range		-40°C to +85°C				
Storage temperature range		-55°C to +105°C				
Moisture Sensitivity	Unlimited	Level 1				
Reflow Conditions per JEDEC J- STD-020	During 10 seconds max	260°C max				
Packing Units	Tape or Reel	500 or 1,000 pcs				

Environmental Conditions							
Test	IEC 60068 Part	IEC 60679-1 Clause	MIL-STD-202G Method	MIL-STD-810F Method	MIL-PRF- 55310D Clause	Test Conditions (IEC)	
Sealing Tests (if applicable	2-17	5.6.2	112E		3.6.1.2	Gross lead: Test Oc Fine Leak: Test Qk	
Solderability Resistance to soldering heat	2-20 2-58	5.6.3	208H 210F		3.6.52 3.6.48	Test Ta, Method 1 Test Td1, Method 2 Test Td2, Method 2	
Shock	2-27	5.6.8	213B	516.4	3.6.40	Test Ea, 3 x per axes 100g. 6ms half-sine pulse	
Vibration sinusoidal	2-6	5.6.7.1	201A 204D	516.4-4	3.6.38.1 3.6.38.2	Test FC, 30 min per axes, 1 oct/min 10 Hz – 55 Hz, 0, 75 mm, 55 Hz – 2 kHz, 10 g	
Vibration random	2-64	5.6.7.3	214A	514.5	3.6.38.3 3.6.38.4	Test Fdb	
Endurance Tests -Aging -Extended Aging		5.7.1 5.7.2	108A		4.8.35	30 days @ 85°C 1000 h,2000 h, 8000 h @ 85°C	

Handling Precautions

Flux Residue Resistance

Analog circuit performance can be affected by unclean board.

Be aware if the circuit has very high resistances – even in the low $M\Omega$ – special attention may need to be paid to cleaning. A finished assembly may be adversely affected by flux or cleansing residue. The electronics industry in the past few years has joined the rest of the world in becoming environmentally responsible. Hazardous chemicals are being removed from the manufacturing process – including flux that has to be cleaned with organic solvents. Water-soluble fluxes are becoming more common, but water itself can become contaminated easily with impurities. These impurities will lower the insulation characteristics of the PCB substrate. It is vitally important to clean with freshly distilled water every time a high-impedance circuit is cleaned. There are applications that may call for the older organic fluxes and solvents, such as very low power battery powered equipment with resistors in the 10s of M Ω range. Nothing can beat a good vapor defluxing machine for ensuring that the board is clean.