

PLANAR MONOLITHICS INDUSTRIES, INC.

East Coast: 7311F GROVE ROAD, FREDERICK, MD 21704 USA • PHONE: 301-662-5019 • FAX: 301-662-2029
West Coast: 4921 ROBERT J. MATHEWS PARKWAY, SUITE 1, EL DORADO HILLS, CA 95762 USA • PHONE: 916-542-1401
EMAIL: sales@pmi-rf.com
WEB: www.pmi-rf.com
ISO 9001 CERTIFIED

APPENDIX A SWITCH, RF, PIN DIODE, SPST QUALIFICATION & ENVIRONMENTAL TESTING (Reference PMI Model No. P1T-7G18G-60-T-2W)

Table I - Qualification Test

10	ible I – Qual	IIICalioi	1 1631			
TEST	REQT		METHOD <u>2</u> /			
		PARA	INSPECTION	ANALYSIS 3/	TEST	
Pre-environmental						
Electrical, Operating Extremes	3.3 and Table IV				QTP	
Environmental Testing						
Non-operating Temperature Cycling	3.4.2	4.4.1			4.4.1, 500 cycles	
Altitude	3.4.3	4.4.2			X	
Mechanical Shock	3.4.4	4.4.3			Х	
Vibration	3.4.5	4.4.4			X	
Humidity	3.4.6	4.4.5			Х	
Hermetic Seal	3.4.8, 3.5.6	4.4.7			X	
Electrical, Operating Extremes	3.3 and Table IV				QTP	
Internal Water ∀apor Content <u>1</u> /	3.4.9	4.4.8		X	Х	
Post-environmental	•					
Mechanical	3.5		X			
Marking	3.7		X			
Workmanship	3.8		X			
Marking Permanency	3.4.7	4.4.6	X			
Steady State Life Test		4.4.10			X	
Electrical, Operating Extremes	3.3 and Table IV				QTP	

NOTES: <u>1</u>/ Controlled vacuum bake-out of manufactured product satisfies the RGA requirement.

- Z/ The manufacturer shall show compliance to the requirement by the method with an "X" in the box. If there is an "X" in two (2) boxes (i.e., analysis and test) the manufacturer may show compliance by either method.
- In the Analysis method, the manufacturer may show compliance to the requirement by Providing evidence that similarly constructed products have survived/passed the requirements.

Table II - Acceptance Test, 100%

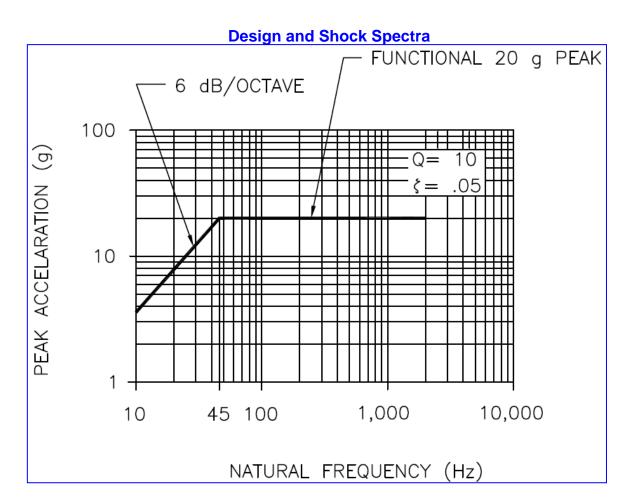
Table II Acceptance Test, 10070					
TEST	REQUIREMENT	TEST METHOD			
Mechanical	3.5				
Marking	3.7				
Workmanship	3.9				
Electrical Test	3.3 and Table IV	ATP			

Table III - Screening, 100%

TEST	REQUIREMENT	METHOD
Internal Visual Inspection	3.4.10	4.4.11
Electrical Test	3.3 and Table IV	ATP
Non-operating Temperature Cycling 2/	3.4.2	4.4.1, 25 cycles
Mechanical Shock 2/	3.4.4	4.4.3
Burn-In Test 1/		4.4.9
Fine and Gross Leak <u>3</u> /	3.4.8, 3.5.6	4.4.7
External Visual	3.4.11	4.4.12

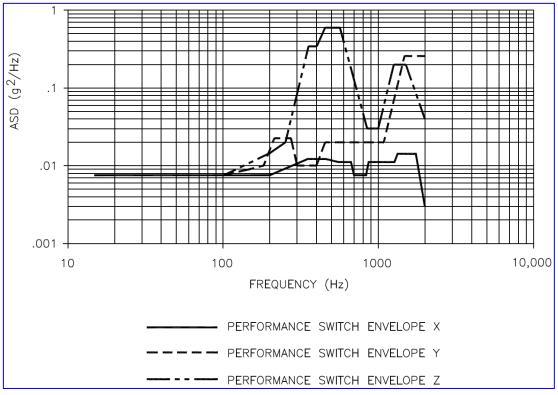
NOTES: <u>1</u>/ Pre-seal burn-in may be performed as follows:

- **a.** Maximum pre-seal burn-in time, accumulated for screening compliance, shall not exceed one-half the total burn-in time. Pre-seal burn-in, when utilized, shall be accomplished in an oven providing an inert gas atmosphere.
- **b.** A minimum of on-half the burn-in shall be performed after seal.
- **c.** The actual process flow shall be clearly documented on the work order travelers.
- **d.** Parts shall receive internal visual inspection, as specified, prior to sealing.
- Z/ Temperature cycling and mechanical shock, as specified, shall be performed after completion of the seal operation.
- 3/ Seal test shall be performed on parts after completion of temperature cycling and mechanical shock.

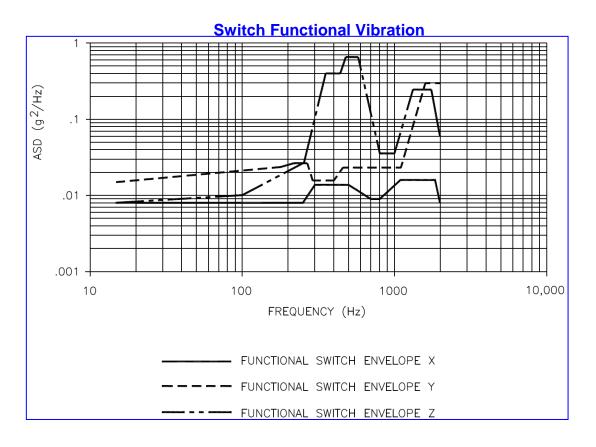

Table IV – Electrical Requirements

PARAMETER	CONDITIONS	LIMITS	UNITS	TEST		
				QUALIFICATION 5/	ACCEPTANCE 4/	
Frequency Range		7-18	GHz	X	X	
RF Power Handling	30% duty cycle and 130 μsec pulse width	2	watts	X	X	
Isolation (Off State) 2/		60 min	dB	X	X	
Insertion Loss		3 max	dB	X	X	
Insertion Loss (On State) <u>1</u> /		≤ 3	dB	X	X	
Insertion Loss Ripple	Any 500 MHz bandwidth within 7-18 GHz	0.3 max	dB	X	X	
VSWR Port Selected Port Not Selected	Into termination/source of ≤1.3:1	1.6 to 1 max 2.0 to 1 max <u>3</u> /	ratio	Х	Х	
Command Logic	TTL (0,5V), see switch Table V			X		
DC Power Dissipation	See 3.5.3.2.1	1.25	W	X	X	
Grounding		The case shall be electrically grounded	N/A			
Phase Noise 6/	Residual noise 100Hz to 1kHz Residual noise 1kHz to 10kHz	Linear -90 to -125 -125	dBc/Hz	Х		
Rise Time		20-50	ns	X		
Fall Time		40-80	ns	X		
Switch Delay		<100	ns	X		

NOTES:


- 1/ Insertion loss shall be measured with the control signal relative to its return (i.e., ON or low loss state) over the frequency range of 7-18 GHz.
- Measure and record S_{21} from 6 GHz to 18 GHz (1201 points), with the DC voltage supply set to > 2.6 V (Pulse modulator in the off state). Isolation will be verified from this data.
- 3/ VSWR required only during functional vibration.
- 4/ The part shall be tested at 25°C ±3°C.
- 5/ The requirement is performed at -30°C, 25°C and 85°C with a tolerance of ±3°C. The network analyzer shall be set to sweep from 6-18 GHz with an 8% smoothing aperture.
- 6/ Phase noise required only during functional vibration at ambient temperature.

Switch Performance Vibration


Switch Performance Vibration (Contd)

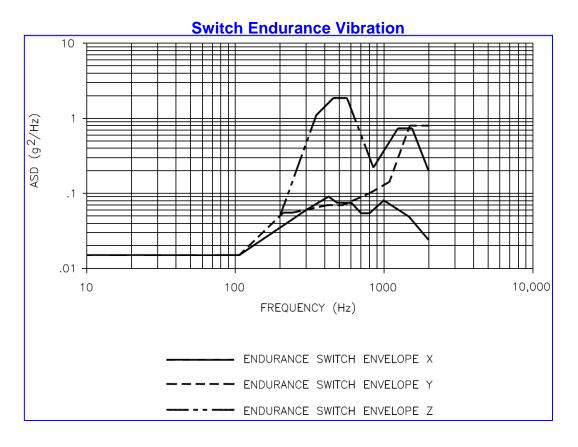
SWITCHES' PERFORMAN ENVELO		
FREQUENCY (Hz)	PSD (g²/Hz)	SLOPE m
15	0.0076	_
200	0.0076	0.0
350	0.0120	2.4
450	0.0120	0.0
530	0.0110	-1.6
670	0.0110	0.0
700	0.0076	-25.3
830	0.0076	0.0
880	0.0110	19.0
1250	0.0110	0.0
1320	0.0140	13.3
1640	0.0140	0.0
2000	0.0030	-23.3
grms	= 4.5	

SWITCHES' PERFORMAN ENVELO		
FREQUENCY (Hz)	PSD (g²/Hz)	SLOPE m
15	0.0076	_
100	0.0076	0.0
150	0.0090	1.3
180	0.0100	1.7
210	0.0220	15.3
270	0.0220	0.0
300	0.0100	-22.5
400	0.0100	0.0
450	0.0200	17.7
1150	0.0200	0.0
1550	0.2600	25.8
2000 0.2600		0.0
grms =		

SWITCHES' PERFORMAN ENVELO		
FREQUENCY (Hz)	PSD (g²/Hz)	SLOPE m
15	0.0076	-
100	0.0076	0.0
200	0.0150	2.9
250	0.0200	3.9
350	350 0.3500	
400	0.3500	0.0
450	0.6000	13.7
575	0.6000	0.0
850	0.0300	-23.0
1000	0.0300	0.0
1330	330 0.2000	
1690	0.2000	0.0
2000	2000 0.0400	
grms =	= 17.8	

Switch Functional Vibration (Contd)

30 MINUTES


30 MII		
SWITCHES' FUNCTIONA ENVELO		
FREQUENCY (Hz)	PSD (g²/Hz)	SLOPE m
15	0.008	-
250	0.008	0.0
300	0.014	9.2
500	0.014	0.0
550	0.012	-4.9
700	0.009	-3.9
800	0.009	0.0
1132	0.016	5.2
1850	0.016	0.0
2000	0.008	-26.7
grms	= 5.1	
		-

SWITCHES' FUNCTIONA ENVELO		
FREQUENCY (Hz)	PSD (g²/Hz)	SLOPE m
15	0.015	_
176	0.023	0.5
227	0.026	1.2
260	0.026	0.0
280	0.015	-21.5
400	0.015	0.0
460	0.022	7.7
1100	0.022	0.0
1600	0.300	20.9
2000	0.300	0.0
grms =	= 14.1	

SWITCHES' FUNCTIONA ENVELO		
FREQUENCY (Hz)	PSD (g²/Hz)	SLOPE m
15	0.008	_
100	0.010	0.4
250	0.025	3.0
350	0.400	24.7
430	0.400	0.0
460	0.650	21.6
580	0.650	0.0
800	0.035	-27.3
1000	1000 0.035	
1350	0.240	19.2
1720	0.240	0.0
2000	0.060	-27.6
grms =	= 18.9	

30 MINUTES

Switch Endurance Vibration (Contd)

Cition Endurance (Conta)										
2 HO	URS			2 HOURS			2 HOURS			
SWITCHES' ENDURANC ENVELO	E SWITCH			SWITCHES' ENDURANC ENVELO	E SWITCH			SWITCHES' ENDURANC ENVELO	E SWITCH	
FREQUENCY (Hz)	PSD (g²/Hz)	SLOPE m		FREQUENCY (Hz)	PSD (g²/Hz)	SLOPE m		FREQUENCY (Hz)	PSD (g²/Hz)	SLOPE m
10	0.015	_	1	10	0.015	_		10	0.015	-
113	0.015	0.0]	113	0.015	0.0		113	0.015	0.0
300	0.060	4.3		211	0.055	6.2		150	0.030	7.3
416	0.090	3.7		240	0.055	0.0		200	0.050	5.3
480	0.075	-3.8]	410	0.070	1.4		352	1.135	16.6
600	0.075	0.0		510	0.070	0.0		450	1.802	5.6
700	0.055	-6.1]	800	0.100	2.4		577	1.802	0.0
800	0.055	0.0		1150	0.140	2.8		865	0.220	-15.6
1000	0.080	5.1		1500	0.795	19.6		1310	0.730	8.7
1510	0.049	-3.6		2000	0.795	0.0		1665	0.730	0.0
2000	0.024	-7.6]	grms =	= 25.0		-	2000	0.200	21.2
grms =	10.25		_			•		grms =	= 35.1	