	REVISIONS								
ZONE	REV.	DESCRIPTION DATE APPROVED							
		Original Release	25 Jan 2008	PRELIMINARY					

REV STATUS	REV	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
SHEETS	SHEET	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
REV STATUS	REV																
SHEETS	SHEET	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32
SCD No.:	MIKES 730	0049	DATE 25 Jan 2008						r Monolithics Industries, Inc. G Grove Road, Frederick, MD 21704								
CHECK APPD. ENGR. QC.					RELIABILITY PREDICTION MODEL: RFFD-618-730049 PART No. T0737SOCN730049-001 FILTER DETECTOR												
					SIZE: REV:	A A			CM: 0Z) ALE: N			RAWIN HEET	G No: 1	35	0-000		

CONFIDENTIAL AND PROPRIETORY

PMI

PLANAR MONOLITHICS INDUSTRIES, INC. 7311-G GROVE RD., FREDERICK MD.21704

TEL: 301-631-1579 FAX: 301-662-2029

URL: WWW.PLANARMONOLITHICS.COM SALES@PLANARMONOLITHICS.COM ISO 9001:2000 CERTIFIED

RELIABILITY PREDICTION

FOR

PMI MODEL NUMBER: RFDD-618-730049

FILTER DETECTOR

CONFIDENTIAL AND PROPRIETORY

PLANAR MONOLITHICS INDUSTRIES, INC. 7311-G GROVE RD., FREDERICK MD.21704 TEL: 301-631-1579 FAX: 301-662-2029

URL: WWW.PLANARMONOLITHICS.COM SALES@PLANARMONOLITHICS.COM ISO 9001:2000 CERTIFIED

TABLE OF CONTENTS

PARA	DESCRIPTION	PAGE
1.0	SCOPE	4
2.0	RELIABILITY PREDICTION	4
3.0	COMPONENT DERATING	5
4.0	CONCLUSION	6
Appendix A	ELECTRICAL SCHEMATIC DRAWING	7
Appendix B	FAILURE RATE CALCULATIONS AND STRESS	8-15
	DETECTOR DIODE	8
	PROTECTION DIODE	9
	RESISTORS SMD 0603	10
	RESISTORS ETCHED	11
	CAPACITORS MIS Beam Lead Capacitors	12
	CONNECTORS SMA RF	13
	CONNECTORS GLASS FEEDTHROUGH PINS	14
	LOW PASS FILTER	15
Appendix C	COMPONENT SPECIFICATIONS AND DATA	16-39
	DETECTOR DIODE	16
	PROTECTION DIODE	17
	CAPACITORS MIS Beam Lead Capacitors	18
	RESISTORS SMD 0603	19
	RESISTORS ETCHED	20
	ROGERS 5880 SUBSTRATE FOR LOW PASS FILTER	33
	CONNECTORS GLASS FEEDTHROUGH PINS	35

CONFIDENTIAL AND PROPRIETORY

PLANAR MONOLITHICS INDUSTRIES, INC. 7311-G GROVE RD., FREDERICK MD.21704

TEL: 301-631-1579 FAX: 301-662-2029

URL: WWW.PLANARMONOLITHICS.COM SALES@PLANARMONOLITHICS.COM ISO 9001:2000 CERTIFIED

1. SCOPE

1.1. This document contains the Reliability Prediction and Derating for the PMI Model RFFD-618-730049 FILTER DETECTOR. This reliability prediction has been done according to RF, FILTER DETECTOR ASSY drawing number 730049. As specified the reliability prediction is done in accordance with MIL-HDBK-217F and CHANGE NOTICE 1 and 2. In addition to the reliability prediction, all parts have been derated according to RADC-TR-72-177 level II. The specifications and stresses of each component are detailed in this document.

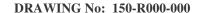
2. RELIABILITY PREDICTION

- 2.1. The failure rate of each individual component used in the Filter Detector was evaluated by using the specifications contained in RF, FILTER DETECTOR ASSY drawing number 730049 together with the individual component manufacturers specifications and the values given in MIL-HDBK-217F together with change notices 1 and 2.
- 2.2. Each components predicted failures per million hours at 95 deg C were then multiplied by the number of components used The failure rates of all components were then summed to form the total predicted failure rate.
- 2.3. The overall predicted failure rate of about 5 failures per million hours (FPMH) is within the maximum of 9 FPMH as specified in 730049 point 3.7.1.
- 2.4. The equations and details of the individual components failure rate calculations are included in Appendix A.

PART NAME	Part References	No parts	Individual Failure Rate	Combined Failure Rate
			Failures per million	Failures per million
			hours	hours
DETECTOR DIODE	D1, D2	2	1.2312	2.4624
PROTECTION DIODE	D3, D4	2	0.0002	0.0004
RESISTORS SMD 0603	R1, R2, R3	3	0.0487	0.1462
	R4, R5, R6, R7,			
RESISTORS ETCHED	R8, R9, R10	7	0.0256	0.1795
	C1a, C1b, C1c,			
CAPACITORS	C1d	4	0.1197	0.4788
CONNECTORS SMA RF	J1, J2	2	0.1197	0.2394
CONNECTORS GLASS	J1, J2, PIN1,			
FEEDTHROUGH PINS	PIN2, PIN3	5	0.0048	0.0240
LOW PASS FILTER	LPF1	1	1.5600	1.5600
COMBINED TOTAL				
FAILURE RATE				5.0906

PLANAR MONOLITHICS INDUSTRIES, INC. 7311-G GROVE RD., FREDERICK MD.21704

TEL: 301-631-1579 FAX: 301-662-2029


URL: WWW.PLANARMONOLITHICS.COM SALES@PLANARMONOLITHICS.COM

ISO 9001:2000 CERTIFIED

3. COMPONENT PART DERATING

3.1. The electrical and thermal stresses of each component have been evaluated using the specifications contained in RF, FILTER DETECTOR ASSY drawing number 730049 together with the individual component manufacturers specifications. The derating as specified in RADC-TR-72-177 level II.

	Part					
PART NAME	References	Rated	Level II	Design	Units	
DETECTOR						
DIODE	D1, D2	175	125	110	deg C	Junction Temperature
		4	2.8	0	V	Breakdown Voltage DC
						Current Not Specified
						Power Dissipation Normal
		150	97.5	5	mW	Maximum
						Power Dissipation No Damage
		150	97.5	50	mW	Specification 3.2.3
PROTECTION	D0 D:					
DIODE	D3, D4	150	110	110	deg C	Junction Temperature
		85	59.5	1	V	Breakdown Voltage DC
		015	140	20	A	Current Protection Specification
		215	140	30	mA	3.2.9 Power Dissipation Normal
		150	97.5	0	mW	Maximum
		130	37.3	0	11100	Power Dissipation At Protection
		150	97.5	30	mW	Specification 3.2.9
		100	07.0	- 00	11111	Specification 5.2.6
RESISTORS						
SMD 0603	R1, R2, R3	155	115	110	deg C	Temperature
CIVID 0000	111, 112, 110	50	110	1	V	Maximum working voltage
					•	Power Dissipation Normal
		100	15	0.1	mW	Maximum
						Power Dissipation At Protection
		100	15	15	mW	Specification 3.2.9
	R4, R5, R6,					
RESISTORS	R7, R8, R9,					Temperature Omegaply has been
ETCHED	R10	155	115	110	deg C	tested at 160 deg C
		50		1	V	Maximum working voltage
		100	00	_	\^/	Power Dissipation Normal
		100	20	1	mW	Maximum
		100	00	4-7	\^/	Power Dissipation No Damage
		100	20	17	mW	Specification 3.2.3

PLANAR MONOLITHICS INDUSTRIES, INC. 7311-G GROVE RD., FREDERICK MD.21704

LPF1

TEL: 301-631-1579 FAX: 301-662-2029

URL: WWW.PLANARMONOLITHICS.COM SALES@PLANARMONOLITHICS.COM ISO 9001:2000 CERTIFIED

CAPACITORS	C1a, C1b, C1c, C1d	150	125	110	deg C	Temperature
		50	30	1	V	Maximum working voltage
CONNECTORS		405				
SMA RF	J1, J2	165	140	110	deg C	Temperature
		500	350	1	V	Breakdown Voltage DC
						Current Protection Specification
		2000	1400	30	mA	3.2.9
CONNECTORS GLASS FEEDTHROUGH PINS	J1, J2, PIN1, PIN2, PIN3	250		110	deg C	Temperature MIL-HDBK-217F pp15-2
1 1110	1 11 NZ, 1 11 NO	250		110	ueg o	Current Protection Specification
	I	I			I	I OUITETILI TOLECLIOH ODECHICALIOH I

30

110

mA

deg C

3.2.9

Temperature Dielectric tested

-100 to +250 deg C

4. CONCLUSIONS

LOW PASS

FILTER

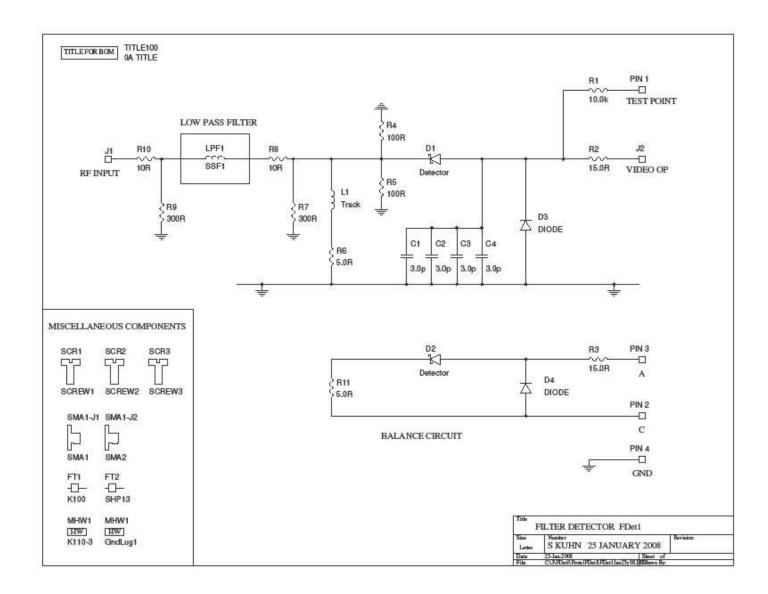
4.1. The Reliability Prediction for the Filter Detector was calculated according to the specifications contained in RF, FILTER DETECTOR ASSY drawing number 730049 together with the individual component manufacturers specifications and the values given in MIL-HDBK-217F and shown to be withing the specified value. That is 5 FPMH versus a specified maximum of 9 FPMH. (FPMH is failures all per million hours).

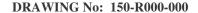
2000

150

1400

- 4.2. The stresses on all components has been shown to be within the derating limits as specified in RADC-TR-72-177 level II.
- The conclusion is that this design meets the reliability and derating levels for the 4.3. RF, FILTER DETECTOR ASSY drawing number 730049.



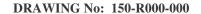

PLANAR MONOLITHICS INDUSTRIES, INC. 7311-G GROVE RD., FREDERICK MD.21704

TEL: 301-631-1579 FAX: 301-662-2029

URL: WWW.PLANARMONOLITHICS.COM SALES@PLANARMONOLITHICS.COM ISO 9001:2000 CERTIFIED

APPENDIX A: ELECTRICAL SCHEMATIC DRAWING

PLANAR MONOLITHICS INDUSTRIES, INC. 7311-G GROVE RD., FREDERICK MD.21704

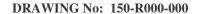

TEL: 301-631-1579 FAX: 301-662-2029

URL: WWW.PLANARMONOLITHICS.COM SALES@PLANARMONOLITHICS.COM ISO 9001:2000 CERTIFIED

APPENDIX B: FAILURE RATE CALCULATIONS AND STRESS

DETECTOR DIODE						
PARTS:	D1,D2					
DIODES,	HIGH FRE	QUENCY (MICROWAVE, RF)				
MIL-HDB	K-217F	pp 6-4 6-5				
$\lambda p = \lambda b$ T	τΤ πΑ πR	πQ πE failures per million hours				
λb	0.027	Base Failure Rate				
πΤ	3.8	Temperature Factor for 95 deg C Mikes730049 3.7.1 sheet19				
πΑ	1	Application Factor				
πR	1	Power Rating Factor				
	_	Quality Factor Manufacturer states good for high reliability in space and				
πQ	1	military				
πΕ	Environement Factor Auf Airborne Uninhabited Fighter Mil217 pp3-12 Mikes730049 3.7.1 sheet19					
111	12	WIINCOTOUCHO C.T. I SHEELIO				
	1.2312	Failures per million hours.				

DERATING		DETECTOI DIODE	R	
RADC-TF	R-82-177 LE	VEL II ref	pp 99-108	3
Rated	Level II	Design	Units	
175	125	110	deg C	Junction Temperature
4	2.8	0	V	Breakdown Voltage DC
				Current Not Specified
150	97.5	5	mW	Power Dissipation Normal Maximum
150	97.5	50	mW	Power Dissipation No Damage Specification 3.2.3

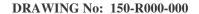


PLANAR MONOLITHICS INDUSTRIES, INC. 7311-G GROVE RD., FREDERICK MD.21704

TEL: 301-631-1579 FAX: 301-662-2029

PROTEC	TION DIODE	
PARTS:	D3,D4	
DIODES,	LOW FREQ	UENCY
	14.0475	
MIL-HDB	K-217F	pp 6-2 6-3 Notice 2
$\lambda n - \lambda h$ T	<u> </u> τΤ πς πΩ τ	TQ πE failures per million hours
Λρ – Λο 1		TQ TIE Tallates per Tillilott Hours
λb	0.0038	Base Failure Rate
πΤ	7.2	Temperature Factor for 95 deg C Mikes730049 3.7.1 sheet19
πS	0.00002	Stress Factor Applied V= 1 volt Rated V = 85 Vs = 1/85 πS= Vs^2.43
πС	1	Contact Construction Factor
πQ	8	Quality Factor (Qualified to AEC-Q101 standards for High Reliability) Plastic -> 8
		Environement Factor Auf Airborne Uninhabited Fighter Mil217 pp3-5
πΕ	43	Mikes730049 3.7.1 sheet19
	0.0002	Failures per million hours.

DERATIN	DERATING		TION I	DIODE
RADC-TR	-82-177 LEV	/ELII re	f pp 99	-108
Rated	Level II	Design	Units	
			deg	
150	110	110	С	Junction Temperature
85	59.5	1	V	Breakdown Voltage DC
215	140	30	mA	Current Protection Specification 3.2.9
150	97.5	0	mW	Power Dissipation Normal Maximum
150	97.5	30	mW	Power Dissipation At Protection Specification 3.2.9

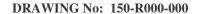


PLANAR MONOLITHICS INDUSTRIES, INC. 7311-G GROVE RD., FREDERICK MD.21704

TEL: 301-631-1579 FAX: 301-662-2029

RESISTO	RS SMD 06	603
PARTS:	R1,R2,R3	
RESISTO	RS RM Ch	ip
MIL-HDB	K-217F	pp 9-1 9-3 Notice 2
$\lambda p = \lambda b$ T	τΤ πΡ πЅ τ	πQ πE failures per million hours
λb	0.0037	Base Failure Rate RM Chip
πT	1.9	Temperature Factor for 95 deg C Mikes730049 3.7.1 sheet19
πΡ	0.068	Power Factor Normally less than 0.001 Watts
πS	0.79	Power Stress Factor
πQ	3	Quality Factor Using Non Established Reliability value of 3
_	40	Environement Factor Auf Airborne Uninhabited Fighter Mil217 pp3-5
πΕ	43	Mikes730049 3.7.1 sheet19
	0.046=	
	0.0487	Failures per million hours.

			,				
DERATING		RESISTORS SMD 0603					
RADC-TF	R-82-177 LE	VEL II r	ef pp 1	20-123 MIL-R-22684 and MIL-R39017			
Rated	Level II	Design	Units				
			deg				
155	115	110	С	Temperature			
50		1	V	Maximum working voltage			
100	15	0.1	mW	Power Dissipation Normal Maximum			
100	15	15	mW	Power Dissipation At Protection Specification 3.2.9			

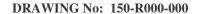


PLANAR MONOLITHICS INDUSTRIES, INC. 7311-G GROVE RD., FREDERICK MD.21704

TEL: 301-631-1579 FAX: 301-662-2029

RESISTO	RS ETCH	ED
PARTS:	R4,R5,R6,	R7,R8,R9,R10
RESISTO	RS RD	
MIL-HDB	K-217F	pp 23-1 Microwave Attenuators states use Resistor type RD
		pp 9-1 9-3 Notice 2
$\lambda p = \lambda b$ T	τΤ πΡ πS	πQ πE failures per million hours
λb	0.0037	Base Failure Rate
πТ	1	Temperature Factor for 95 deg C Mikes730049 3.7.1 sheet19
πΡ	0.068	Power Factor Normally less than 0.001 Watts
πS	0.79	Power Stress Factor
πQ	3	Quality Factor Using Non Established Reliability value of 3
		Environement Factor Auf Airborne Uninhabited Fighter Mil217 pp3-5
πΕ	43	Mikes730049 3.7.1 sheet19
	0.0256	Failures per million hours.

DERATING		RESISTORS ETCHED				
RADC-TR-82-177 LEVEL II ref pp 120-123 MIL-R-22684 and MIL-R39017						
Rated	Level II	Design	Units			
			deg			
155	115	110	С	Temperature Omegaply has been tested at 160 deg C		
50		1	V	Maximum working voltage		
100	20	1	mW	Power Dissipation Normal Maximum		
100	20	17	mW	Power Dissipation No Damage Specification 3.2.3		

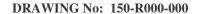


PLANAR MONOLITHICS INDUSTRIES, INC. 7311-G GROVE RD., FREDERICK MD.21704

TEL: 301-631-1579 FAX: 301-662-2029

CAPACIT	ORS MIS	Beam Lead Capacitors
PARTS:	C1a, C1b, 0	C1c,C1d 4 in parallel
CAPACIT	ORS CM, C	CMR, CY, CYR all equivalent.
MIL-HDB	K-217F	pp10-1 10-6 Notice 2
$\lambda p = \lambda b$ T	τΤ πΟ πν τ	τSR πQ πE failures per million hours
λb	0.00076	Base Failure Rate Mica or Glass Cap Style CM or CY
πT	15	Temperature Factor for 95 deg C Mikes730049 3.7.1 sheet19
πС	0.35	Capacitance Factor 10pF
πV	1	Voltage Stress Factor 50 Volt diodes
πSR	1	Series Resistance Factor for tantalum capacitors only.
	,	Quality Factor These capacitors are available as high reliability screened
πQ	1	Version.
πΕ	30	Environement Factor Auf Airborne Uninhabited Fighter Mil217 pp3-5 Mikes730049 3.7.1 sheet19
11 -	30	William Control Control Control
	0.1197	Failures per million hours.

DERATIN	NG	CAPACITORS	MIS Bea	m Lead Capacitors		
RADC-TF	R-82-177 LE	VELII ref pp,	177 MIL-C	c-39014		
Rated	Level II	Design	Units			
150	125	110	deg C	Temperature		
50	30	1	V	Maximum working voltage		



PLANAR MONOLITHICS INDUSTRIES, INC. 7311-G GROVE RD., FREDERICK MD.21704 TEL: 301-631-1579 FAX: 301-662-2029

CONNEC	TODO ONA	
CONNEC	TORS SMA	A RF
PARTS:	J1,J2	
CONNEC	TORS CO.	AXIAL, RF
MIL-HDB	K-217F	pp 15-1 15-3
$\lambda p = \lambda b$ T	τΚ πΡ πΕ	failures per million hours
λb	0.016	Base Failure Rate Teflon insert at 100 deg C
πΚ	1	Mating Factor. Mating / Unmating cycles per 1000 hours < 0.05
πР	1	Active Pins Factor Only 1 pin
		Environement Factor Auf Airborne Uninhabited Fighter Mil217 pp3-5
πΕ	12	Mikes730049 3.7.1 sheet19
	0.1920	Failures per million hours.

DERATII	DERATING		CONNECTORS SMA RF			
RADC-T	R-82-177 LI	EVEL II	ref pp 2	206-210		
Rated	Level II	Design	Units			
			deg			
165	140	110	С	Temperature		
500	350	1	V	Breakdown Voltage DC		
2000	1400	30	mA	Current Protection Specification 3.2.9 (IttCannonSpec)		

PLANAR MONOLITHICS INDUSTRIES, INC. 7311-G GROVE RD., FREDERICK MD.21704

TEL: 301-631-1579 FAX: 301-662-2029

CONNECTORS	S GLASS FE	EEDTHROUGH PINS
PARTS:	J1,J2,PIN	1,2,3
CONNECTORS	COAXIAL	, RF
MIL-HDBK-217	F	pp 15-1 15-3
) -) - C -) _F (-''	200 a
$\Lambda p = \Lambda b \pi K \pi F$	πΕ failu	res per million hours
λb	0.0004	Base Failure Rate
πΚ	1	Mating Factor. Mating / Unmating cycles per 1000 hours < 0.05
πΡ	1	Active Pins Factor Only 1 pin
		Environement Factor Auf Airborne Uninhabited Fighter Mil217 pp3-5
πΕ	12	Mikes730049 3.7.1 sheet19
	0.0040	
	0.0048	Failures per million hours.

DERATIN	NG	CONNECT	CONNECTORS GLASS FEEDTHROUGH PINS			
RADC-TR-82-177 LEVEL II ref pp 206-210						
Rated	Level II	Design	Units			
250		110	deg C	Temperature MIL-HDBK-217F pp15-2		
2000	1400	30	mA	Current Protection Specification 3.2.9		

CONFIDENTIAL AND PROPRIETORY

PLANAR MONOLITHICS INDUSTRIES, INC. 7311-G GROVE RD., FREDERICK MD.21704

TEL: 301-631-1579 FAX: 301-662-2029

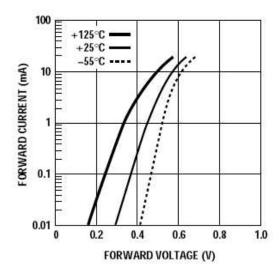
LOW PAS	SS	
PARTS:	LPF1	
ELECTRO	ONIC FILTE	RS, NON TUNABLE
MIL-HDB	K-217F	pp 21-1
$\lambda p = \lambda b$ T	τQ πE fai	lures per million hours
λb	0.12	Base Failure Rate
πQ	1	Quality Factor MIL-SPEC
πΕ	13	Environement Factor Auf Airborne Uninhabited Fighter Mil217 pp3-5 Mikes730049 3.7.1 sheet19
	1.5600	Failures per million hours.

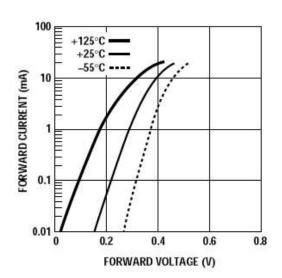
DERATING		LOW PASS FILTER	3	
RADC-	ΓR-82-177 L	EVEL II No	Specific	section covering filters or Duroid substrate
Rated	Level II	Design	Units	
150		110	deg C	Temperature Dielectric tested -100 to +250 deg C

PLANAR MONOLITHICS INDUSTRIES, INC. 7311-G GROVE RD., FREDERICK MD.21704

TEL: 301-631-1579 FAX: 301-662-2029

URL: WWW.PLANARMONOLITHICS.COM SALES@PLANARMONOLITHICS.COM **ISO 9001:2000 CERTIFIED**


APPENDIX C: COMPONENT SPECIFICATIONS AND DATA


Detector Diode

The schottky diodes are rated for operation to 26 GHz.. High reliability specified and tested. Specified to operate from -65 to 175 deg C.

There are a few optional models of these diodes, we will construct detectors with at least the two versions shown here. We will then select specifications. the best choice to meet

Typical Parameters

Maximum Ratings

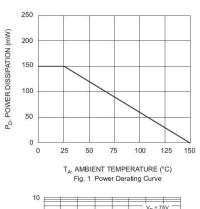
Pulse Power Incident at $T_A = 25^{\circ}C$	1 W
Pulse Width = 1 ms , $Du = 0.001$	
CW Power Dissipation at $T_A = 25^{\circ}C$	150 mW
Measured in an infinite heat sink derated linearly	
to zero at maximum rated temperature	
T _{OPR} – Operating Temperature Range	-65°C to +175 °C
T _{STG} – Storage Temperature Range	

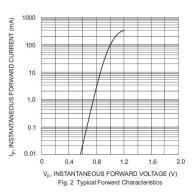
PLANAR MONOLITHICS INDUSTRIES, INC. 7311-G GROVE RD., FREDERICK MD.21704

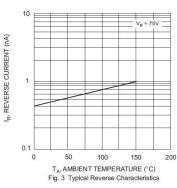
TEL: 301-631-1579 FAX: 301-662-2029

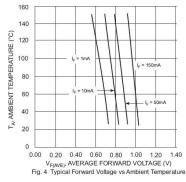
URL: WWW.PLANARMONOLITHICS.COM SALES@PLANARMONOLITHICS.COM ISO 9001:2000 CERTIFIED

Protection Diode


Maximum Ratings @ TA = 25°C unless otherwise specified


Characteristic	Symbol VRRM VRWM VR	Value	Unit V
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage		85	
RMS Reverse Voltage	V _{R(RMS)}	60	V
Forward Continuous Current (Note 1) Single Diode Double Diode	I _{FM}	215 125	mA
Repetitive Peak Forward Current	I _{FRM}	500	mA
Non-Repetitive Peak Forward Surge Current @ t = 1.0µs @ t = 1.0ms @ t = 1.0s	I _{FSM}	4.0 1.0 0.5	А
Power Dissipation (Note 1)	Pd	150	mW
Thermal Resistance Junction to Ambient Air (Note 1)	$R_{\theta JA}$	833	°C/W
Operating and Storage Temperature Range	T _i , T _{STG}	-65 to +150	°C


Electrical Characteristics @ T_A = 25°C unless otherwise specified


Characteristic	Symbol	Min	Тур	Max	Unit	Test Condition
Reverse Breakdown Voltage (Note 3)	V _{(BR)R}	85	_	_	V	I _R = 100μA
Forward Voltage	VF	-	_	0.90 1.0 1.1 1.25	٧	I _F = 1.0mA I _F = 10mA I _F = 50mA I _F = 150mA
Leakage Current (Note 3)	IR	-	_	5.0 80	nA nA	V _R = 75V V _R = 75V, T _j = 150°C
Total Capacitance	CT	-	2	_	pF	V _R = 0, f = 1.0MHz
Reverse Recovery Time	t _{rr}		-	3.0	μS	I _F = I _R = 10mA, I _m = 0.1 x I _R , R _L = 100Ω

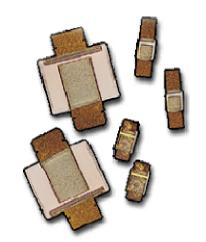
Notes: 3. Short duration test pulse used to minimize self-heating effect.

CONFIDENTIAL AND PROPRIETORY

PLANAR MONOLITHICS INDUSTRIES, INC. 7311-G GROVE RD., FREDERICK MD.21704

TEL: 301-631-1579 FAX: 301-662-2029

URL: WWW.PLANARMONOLITHICS.COM SALES@PLANARMONOLITHICS.COM ISO 9001:2000 CERTIFIED


BEAM LEAD CAPACITORS MIS

Applications:

- DC Blocks
- Bypass
- Filters
- Matching

Maximum Ratings:

Storage Temperature -65 to $150^{\circ}\mathrm{C}$ Operating Temperature -65 to $150^{\circ}\mathrm{C}$

Notes:

- 1. Consult factory for special versions or high reliability screening
- 2. Dielectric Withstanding Voltage is 50V
- 3. Typical Temperature Coeff. = 55ppm/°C
- 4. Typical Insertion Loss = 0.04dB
- 5. All data at 25°C

CONFIDENTIAL AND PROPRIETORY

PMI

PLANAR MONOLITHICS INDUSTRIES, INC. 7311-G GROVE RD., FREDERICK MD.21704

TEL: 301-631-1579 FAX: 301-662-2029

URL: WWW.PLANARMONOLITHICS.COM SALES@PLANARMONOLITHICS.COM ISO 9001:2000 CERTIFIED

DISCRETE RESISTORS

ELECTRICAL CHARACTERISTICS

__Table 2

CHARACTERISTICS	RC0603 1/10 W			
Operating Temperature Range	-55 °C to +155 °C			
Maximum Working Voltage		50 V		
Maximum Overload Voltage		100 V		
Dielectric Withstanding Voltage		100 V		
	5% (E24)	I Ω to 22 MΩ		
Resistance Range	1% (E96)	I Ω to 10 MΩ		
	Zero Ohm Ju	ımper < 0.05 Ω		
Temperature Coefficient	$10 \Omega < R \le 10 M\Omega$	±100 ppm/°C		
Temperature Coemcient	$R \le 10 \Omega$; $R > 10 M\Omega$	±200 ppm/°C		
Jumper Criteria	Rated Current	1.0 A		
jumper Criteria	Maximum Current	2.0 A		

FOOTPRINT AND SOLDERING PROFILES

For recommended footprint and soldering profiles, please see the special data sheet "Chip resistors mounting".

ENVIRONMENTAL DATA

For material declaration information (IMDS-data) of the products, please see the separated info "Environmental data".

CONFIDENTIAL AND PROPRIETORY

PLANAR MONOLITHICS INDUSTRIES, INC. 7311-G GROVE RD., FREDERICK MD.21704

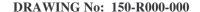
TEL: 301-631-1579 FAX: 301-662-2029

URL: WWW.PLANARMONOLITHICS.COM SALES@PLANARMONOLITHICS.COM ISO 9001:2000 CERTIFIED

ETCHED RESISTORS

SPECIFICATIONS AND PROPERTIES OHMEGA-PLY® RESISTOR-CONDUCTOR MATERIAL

SHEET RESISTIVITIES	
Standard	10, 25, 50, 100, 250 ohms per square

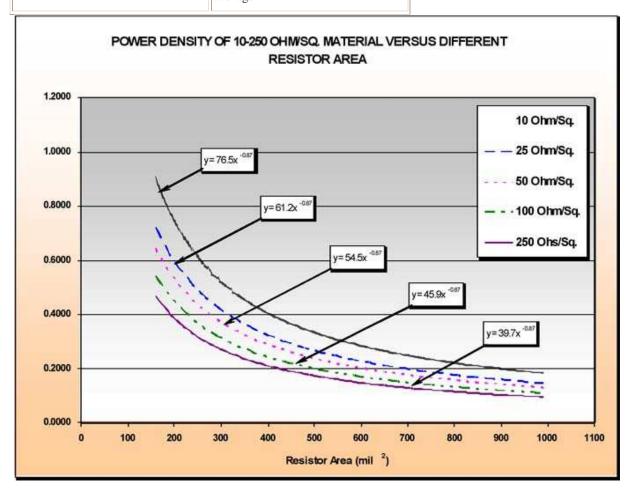

TYPICAL PROPERTIES (EPOXY-GLASS DIELECTRIC)

ETCHED RESISTOR VARIATION (0.5" x 0.5" RESISTOR SIZE)			
10 ohms per square	Plus or minus 3%		
25, 50, 100 ohms per square	Plus or minus 5%		
250 ohms per square	Plus or minus 10%		

RESISTANCE CHANGE AFTER 240 HOURS EXPOSURE TO 95% HUMIDITY AT 40 °C	2% maximum
CURRENT NOISE (PER MIL- STD-202, METHOD 308)	Less than -15 db

MAXIMUM TEMPERATURE COE	FFICIENT OF RESISTANCE (-65 °C TO 125 °C)			
10 ohms per square	-20 ppm per degree C			
25 ohms per square	-50 ppm per degree C			
50 ohms per square	-80 ppm per degree C			
100 ohms per square	+100 ppm per degree C			
250 ohms per square	+100 ppm per degree C			

RESISTANCE CHANGE AFTER 1000 HOURS 70 °C AMBIENT TEMPERATURE				
10 ohms per square	0.4% max (10 Watts/square load)			
25 ohms per square	0.5% max (5 Watts/square load)			
50 ohms per square	1.0% max (2.5 Watts/square load)			


URL: WWW.PLANARMONOLITHICS.COM

PLANAR MONOLITHICS INDUSTRIES, INC. 7311-G GROVE RD., FREDERICK MD.21704 TEL: 301-631-1579 FAX: 301-662-2029

SALES@PLANARMONOLITHICS.COM ISO 9001:2000 CERTIFIED

100 ohms per square	1.0% max (2.5 Watts/square load)
250 ohms per square	1.0% max (2.5 Watts/square load)
TCR TRACKING	
25 ohms per square	Plus or minus 7 ppm per degree C max; Less than 2 ppm per degree C average
100 ohms per square	Plus or minus 15 ppm per degree C max; Less than 8 ppm per degree C average

CONFIDENTIAL AND PROPRIETORY

PLANAR MONOLITHICS INDUSTRIES, INC. 7311-G GROVE RD., FREDERICK MD.21704

TEL: 301-631-1579 FAX: 301-662-2029

URL: WWW.PLANARMONOLITHICS.COM SALES@PLANARMONOLITHICS.COM ISO 9001:2000 CERTIFIED

FOR RESISTOR AREA LARGER THAN 1100 MIL ² , THE RECOMMENDED POWER DISSIPATION AT 25°C AMBIENT IS AS FOLLOWS:					
10 ohms per square	0.190+ MilliWatts/mil ²				
25 ohms per square	0.150+Milliwatts/mil ²				
50 ohms per square	0.138+Milliwatts/mil ²				
100 ohms per square	0.100+Milliwatts/mil ²				
250 ohms per square	0.090+Milliwatts/mil ²				

Maximum power dissipation depends on the ambient temperature, resistor element size and laminate/circuit board thermal properties. Dissipation improves with the use of natural heatsinks such as ground and power planes. Typical power dissipation for most Ohmega-Ply resistor designs operating at an ambient of less than 70 °C is approximately 1/10 to 1/8 Watt.

Note: Because of continuing product improvement, the above specifications and properties are subject to change. The information and data contained herein are based on tests to date, but no warranty thereof is given.

CONFIDENTIAL AND PROPRIETORY

PLANAR MONOLITHICS INDUSTRIES, INC. 7311-G GROVE RD., FREDERICK MD.21704 TEL: 301-631-1579 FAX: 301-662-2029

URL: WWW.PLANARMONOLITHICS.COM SALES@PLANARMONOLITHICS.COM ISO 9001:2000 CERTIFIED

VII) RELIABILITY TEST DATA AND SPECIFICATIONS

- Ohmega-Ply® has been used in numerous applications for over 25 years; exhibiting excellent performance and dependability. Due to its absolute long-term reliability under a variety of severe environmental conditions, Ohmega-Ply® is used in numerous critical products (space-base, aerospace, avionics, etc.) where the utmost in reliability is required.
- The estimated failure rate for Ohmega-Ply® resistors is less than 0.001 resistor elements per 1 million operating hours (this is based on test results where over 1 trillion component hour have been accumulated without a field failure. Field failure is defined as resistor failure that is caused by the resistive material itself, and not other sources of printed circuit board failure (opens, shorts, defective base material, excessive power surges, improper operating conditions, etc.).
- Ohmega-Ply® Specifications and Properties

PLANAR MONOLITHICS INDUSTRIES, INC. 7311-G GROVE RD., FREDERICK MD.21704 TEL: 301-631-1579 FAX: 301-662-2029

AX: 301-662-2029 ISO 9001:2000 CERTI

OHMEGA-PLY® RCM PROPERTIES AND SPECIFICATIONS						Remark & Condition	
Sheet Resistivities (ohm/square)	10	25	50	100	250		
Material Tolerance	+/-3	+/-5	+/-5	+/-5	+/-10		
Load Life Cycling Test (∆ R%)	<0.4 (after 1000 hrs)	<5	<5	<5	0.5 (after 1000 hrs)	MIL-STD-202-108I Ambient Temp: 70C On Cycle: 1.5 hrs Off Cycle: 1.5 hrs Length of Test: 10000 hrs	
Current Noise Index in dB	<-16	<-15	<-15	<-15	<-15	MIL-STD-202-308 Voltage Applied 10 ohm/sq.: 53.2V 25 ohm/sq.: 5.6V 100 ohm/sq.: 7.9V	
Short Time Overload (▲ R%)	0	0	0	0	0	MIL-R-10509 Method 4.6.6 Power: 2.5 X Rated Time: 5 Sec	
Resistance Temperature Characteristic (RTC) PPM/°C	13	50	60	100	100	MIL-STD-202-304 Hot Cycle: 25°, 50°, 75° & 125°C Cold Cycle: 25°, 0°, -25° & 55°C	
Humidity Test (A R%)	0.3	0.5	0.75	1.0	2.0	MIL-STD-202-103A Temp: 40°C Relative Humidity: 95 %	

PMI

PLANAR MONOLITHICS INDUSTRIES, INC. 7311-G GROVE RD., FREDERICK MD.21704 TEL: 301-631-1579 FAX: 301-662-2029

						Time: 240 hrs
Thermal Shock (▲ R%)	0.1	-0.5	1.0	1.0	1.0	MIL-STD-202-107B No. of Cycles: 25 Hot Cycle Temp: 125°C Cold Cycle Temp: -65°C
Hot Oil (▲ R%)		0.1	0.25	0.5	0.75	IPC-TM-650 METHOD 2.4.6 Temp: 260°C Immersion: 20°C
Solder Float (▲ R%)	0.2	0.5	0.75	1.0	0.5	MIL-STD-202-210D Temp: 260°C Immersion: 20 Seconds
Resistance To Solvent (AR%) Tolerance 1-1-1: Trichloroethan: Acetone: Freon:	N/A	0.2 0.0 0.2 0.0	N/A	N/A	N/A	MIL-STD-202-215A Immersion: 15 Min
Capacitance(pF) (at 5 Hz)	~0	~1	~1	~1	~1	
Inductance(nH) (at 5 Hz)	<~0.6	<~0.6	<~0.6	<~0.6	<~0.6	

CONFIDENTIAL AND PROPRIETORY

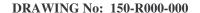
URL: WWW.PLANARMONOLITHICS.COM

PLANAR MONOLITHICS INDUSTRIES, INC. 7311-G GROVE RD., FREDERICK MD.21704 TEL: 301-631-1579 FAX: 301-662-2029

SALES@PLANARMONOLITHICS.COM ISO 9001:2000 CERTIFIED

• In addition to in-house reliability testing at Ohmega Technologies, Inc., there have been numerous tests performed on Ohmega-Ply® by OEM customers and prospective customers. A few of them are:

Cray Research1


In a study of the stability of buried Ohmega-Ply[®] resistors used for ECL termination, Cray concluded that the Ohmega-Ply[®] resistors "would operate well beyond all normal voltages and temperatures, and there have been no reports of a resistor failure due to resistive material." Cray Research also found that incorporating the Ohmega-Ply resistors into the internal plane of a multilayer board substantially improved the signal quality for high-speed devices. Cray Research has used Ohmega-Ply[®] in millions of multilayer circuit boards since 1982 with absolute field reliability of the resistive elements.

Alcatel Bell²

Researchers at Alcatel Bell tested Ohmega-Ply resistors for broadband (45 MHz-5GHz) telecom applications to characterize its impedance response and to compare the reliability of Ohmega-Ply to 0805 discrete thick film chip resistors, rated power 125 mW. A summary of their results is as follows.

Type of Test	Measured max./min. R (Alcatel Tested)	Ohmega Specifications	Thick film chip R (0805)
Humidity Test Temp: 40°C Relative Humidity: 93%	After 21 days: 0.22% for 25 Ohm/sq. 0.07% for 100 Ohm/sq. 0.10% for 250 Ohm/sq. After 56 days: 0.74% for 25 Ohm/sq. 0.14% for 100 Ohm/sq. 0.22% for 250 Ohm/sq.	After 10 days: 0.5% for 25 Ohm/sq. 1.0% for 100 Ohm/sq.	After 56 days: ≤ ± 1.50%
Thermal Cycling Hot Cycle Temp: 125°C Cold Cycle: -25°C	After 100 Cycles -0.03% for 25 Ohm/sq. 0.03% for 100 Ohm/sq0.08 for 250 Ohm/sq.	-0.5% for 25 Ohm/sq.	≤± 0.25%
Aging Without Load Temp: 125°C	After 100 Hours 0.10% for 25 Ohm/sq 0.08% for 100 Ohm/sq -0.13% for 250 Ohm/sq	Not specified	Not specified
Solder Heat/Float Temp: 260°C Immersion: 20°C	-0.02% for 25 Ohm/sq 0.01% for 100 Ohm/sq -0.01% for 250 Ohm/sq	1% for 100 Ohm/sq	<u><</u> ± 0.25%

Planar Monolithics Industries, Inc., 7311-G Grove Road, Frederick, MD 21704 Telephone: 301-631-1579 Fax: 301-662-2029 Email: sales@planarmonolithics.com

PLANAR MONOLITHICS INDUSTRIES, INC. 7311-G GROVE RD., FREDERICK MD.21704 TEL: 301-631-1579 FAX: 301-662-2029

URL: WWW.PLANARMONOLITHICS.COM SALES@PLANARMONOLITHICS.COM

ISO 9001:2000 CERTIFIED

Sheet Resistivity Ohm/sq.	Lmin (nH)	Lmax (nH)	Cmin (pF)	Cmax (pF)
25	0.599	0.657	0.935	1.139
100	0.622	0.682	1.053	1.154
250	0.571	0.653	1.117	1.202
Short	0.6		1	

Minimum and maximum parasitic effects extracted from measured characteristic of integrated resistor

IBM³

IBM built and tested a numbers of evaluation boards that incorporated Ohmega-Ply[®] into number of internal layers of a multiplayer design. This effort was to see what effect, if any, there was on the assembly (and rework) process due to the embedded resistors. In addition, standard environmental stress tests were performed (including thermal cycling, thermal shock, vibration testing and torque testing). The findings of their published report showed "no significant resistance change on the resistors from the assembly process and stress test".

Unisys⁴

In evaluating the long term drift characteristics of Ohmega-Ply® on high Tg, low DC substrate, Unisys concluded that powered (22 mA), Ni-P buried resistors, fabricated using ammoniacal etch process and fully aqueous resist, when placed in a 55 °C cabinet environment, will drift < 2 % in 100,000 hours (11.4 years).

Dassault⁵

Dassault Electronique did a 2 year study of Ohmega-Ply® for an active phased array antenna (X-band). The resistors were used in a stripline configuration a PTFE substrate (Rogers RT Duroid® 60002 and fusion bonded inside a multilayer package). The Ohmega-Ply® was compared to chip resistors and screen printed polymer inks. Ohmega-Ply® was selected for use due to superior tolerance and stability (compared to printed polymer inks) and space saving, parasitic reduction, and solder joint removal (compared to chip resistors). The results of testing are as follows:

CONFIDENTIAL AND PROPRIETORY

PLANAR MONOLITHICS INDUSTRIES, INC. 7311-G GROVE RD., FREDERICK MD.21704 TEL: 301-631-1579 FAX: 301-662-2029

URL: WWW.PLANARMONOLITHICS.COM SALES@PLANARMONOLITHICS.COM ISO 9001:2000 CERTIFIED

Etching Tolerance		Fusion	of Ohmega- Ply Foil	Values After 500 Thermal	Thermal Coefficient of Resistance Within the Range (- 55°C, +125°C)		perform of two power divide Ohmega Technology	wave rmance ports er, when a Foil plogy is d under pollowing
5%	200 µ m	7%	NO	Microstrip: +2% Stripline: +3%	Microstrip: ±6% Stripline: ±7%	300 mW	•	500 thermal cycles (- 55°C, +125°C) 500 hours at 125°C
							•	40 days 40°C, 95% HR
							•	48 hours salt spray

Rogers Corporation⁶

In an internal study, Rogers evaluated Ohmega-Ply® resistors on Kapton® /Pyralux®. They found the following change in a resistor that was 0.25" x 4.0" in size with a flex radius of 0.25" (the flex rate was 10 cycles/minute):

Number of Flex Cycles	% Change in Resistance
150	0.5
1,500	6.1
10,000	25.5

When a cover film or conformal coating was placed over the resistors (or, the resistors were multilayered on an internal plane of circuitry), and flexed up to 250,000 cycles, there was no significant change in resistance.

CONFIDENTIAL AND PROPRIETORY

PLANAR MONOLITHICS INDUSTRIES, INC. 7311-G GROVE RD., FREDERICK MD.21704 TEL: 301-631-1579 FAX: 301-662-2029

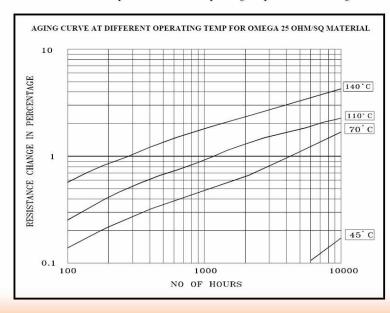
URL: WWW.PLANARMONOLITHICS.COM SALES@PLANARMONOLITHICS.COM ISO 9001:2000 CERTIFIED

References

- 1. Mahler, Bruce and Schroeder, Paul, "Planar Resistors in PCB Design", Electronic Manufacturing, January 1989.
- 2. Peeters, Joris et all., "Characterization of Integrated Resistors for Broadband Telecom Printed Circuit Boards", IPC World Expo, June 1996.
- 3. Martin, Cynthia, "Passive Devices Buried Resistors", report from IBM, Austin, TX, 1998.
- 4. Murphy, Tim, "Long Term Drift of Ni-P Buried Resistors on Cyanate Ester laminate", IPC Printed Circuit Expo, 1994.
- 5. Ledain, Bernard and Herblot, Jean, "Innovative Multilayer Technologies for Active Phased Array Antennas", report from Dassault Electronique Saint-Cloud, France.
- 6. Nguyen, Phong, "Shelf-Life and Flex-Life of Ohmega-Ply Materials", Roger Microwave Conference, June 1989.

CONFIDENTIAL AND PROPRIETORY

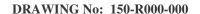
PLANAR MONOLITHICS INDUSTRIES, INC. 7311-G GROVE RD., FREDERICK MD.21704 TEL: 301-631-1579 FAX: 301-662-2029


URL: WWW.PLANARMONOLITHICS.COM SALES@PLANARMONOLITHICS.COM ISO 9001:2000 CERTIFIED

<u>Ωhmega</u> Ohmega Technologies, Inc.

Design Parameters for Optimum Long Term Stability

As a Function for Resistor Operating Temperature


Long-term reliability is a function of operating temperature. Like most electronic components, operating temperature (ambient temperature + temperature rise) is one of the most important factors that determine power rating of the component. As more power is dissipated through the resistors, the temperature of the resistor film increases which makes it more susceptible to thermal oxidation. Stability is measured by the change of resistance with aging. The figure below illustrates the relationship between different operating temperatures and change of resistance with respect to time.

Because the resistor film is a part of laminate, the physical and thermal characteristics of the substrate become major considerations. The heat dissipation of resistor films depends on:

- 1. The size (area) of the resistor
- 2. The circuit thickness and material type
- 3. The circuit configuration (clad/unclad)
- 4. ambient temperature
- 5. The thermal conductivity of the substrate
- Additional system cooling (e.g. air-cooling, other heat sinking, etc.)

32

PMI

PLANAR MONOLITHICS INDUSTRIES, INC. 7311-G GROVE RD., FREDERICK MD.21704

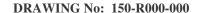
TEL: 301-631-1579 FAX: 301-662-2029

URL: WWW.PLANARMONOLITHICS.COM SALES@PLANARMONOLITHICS.COM ISO 9001:2000 CERTIFIED

BURIED RESISTOR BURN-IN TRAYS

GENERAL OVERVIEW

Stressing the semi- conductor junctions can accelerate failure modes in integrated circuits. This stress usually takes the form of applying the rated, or just slightly above rated, voltages to the part while it is elevated to a higher than rated temperature. The parts are subsequently tested and the failures weeded out. This eliminates the phenomena of higher than normal failure rates early in the life cycle of a part, known as "infant mortality".


In order to ensure that all the parts see the required voltage, in the event of a single part failing with a short circuit, resistors are used to isolate each pin on each part from the common excitation signal. Since the excitation signal, whether DC or AC voltage, will drive the equivalent pins on each part, a short circuit on one part would jeopardize the integrity of the full burn-in on all the other parts.

IC's may have 16 isolated pins, thus requiring 16 eighth or quarter watt resistors per pin. These resistors take up valuable real estate on the burn-in trays. So much so that a tray with no isolation may hold 240 parts while a tray with full isolation may only hold 130 parts.

Utilizing Ohmega-Ply® and other modern printed circuit board design and fabrication techniques, a burn-in tray may be manufactured with the same density as a non-isolated tray, but with each pin fully isolated with the equivalent of an eighth watt resistor. A significant number of tray hours have already been experienced with no detrimental effects.

Trays were designed with multilayer polyimide construction for 125-150 degrees C continuous operation. Power dissipation per tray was limited to 75 watts based on system constraints. Testing has been accomplished on samples of the initial production run primarily to determine the effects of thermal shock and thermal soaking on the multilayer structure and resistor values.

Thermal Shock - MIL-STD-202, Method 107, Condition F, was followed for 50 cycles. This consisted of cycling from -65 to +150 degrees C holding at each temperature for 15 minutes and transferring in less than 2 minutes. There was absolutely no evidence of measling, blistering, or delamination. Further none of the 60 measured resistors changed in value.

PLANAR MONOLITHICS INDUSTRIES, INC. 7311-G GROVE RD., FREDERICK MD.21704

TEL: 301-631-1579 FAX: 301-662-2029

URL: WWW.PLANARMONOLITHICS.COM SALES@PLANARMONOLITHICS.COM ISO 9001:2000 CERTIFIED

<u>Thermal Soak</u> - Two sets of samples, one powered to 10 watts per square inch, the other powered to 1 watt per square inch were immersed in a 160 degree C environment in excess of 4,400 hours. Inasmuch as these are isolation and not precision resistors, design tolerances of \pm 1 percent are reasonable and achievable with this technique.

HIGH TEMPERATURE DRIFT 100 OHMS/SQ. @ 160 C

HOURS	1 WATT/SQ. IN.	10 WATTS/SQ. IN
1400	+ 2.0%	+ 5%
2500	+ 2.5%	+ 5%
3500	+ 2.5%	+ 6%
4500	+ 2.5%	+ 7%

CONFIDENTIAL AND PROPRIETORY

33

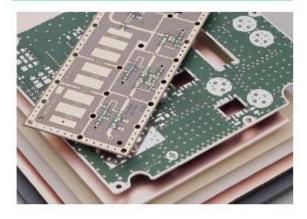
PLANAR MONOLITHICS INDUSTRIES, INC. 7311-G GROVE RD., FREDERICK MD.21704

TEL: 301-631-1579 FAX: 301-662-2029

URL: WWW.PLANARMONOLITHICS.COM SALES@PLANARMONOLITHICS.COM ISO 9001:2000 CERTIFIED

Advanced Circuit Materials Division 100 S. Roosevelt Avenue Chandler, AZ 85226 Tel: 480-961-1382, Fax: 480-961-4533 www.rogerscorporation.com

Data Sheet


RT/duroid®5870 /5880 High Frequency Laminates

Features:

- Lowest electrical loss for reinforced PTFE
- Low moisture absorption.
- Isotropic
- Uniform electrical properties over frequency.
- Excellent chemical resistance.

Some Typical Applications:

- Commercial Airline Telephones
- Microstrip and Stripline Circuits
- Millimeter Wave Applications
- Military Radar Systems
- Missile Guidance Systems
- Point to Point Digital Radio Antennas

RT/duroid® 5870 and 5880 glass microfiber reinforced PTFE composites are designed for exacting stripline and microstrip circuit applications.

Glass reinforcing microfibers are randomly oriented to maximize benefits of fiber reinforcement in the directions most valuable to circuit producers and in the final circuit application.

The dielectric constant of RT/duroid 5870 and 5880 laminates is uniform from panel to panel and is constant over a wide frequency range. Its low dissipation factor extends the usefulness of RT/duroid 5870 and 5880 to Ku-band and above.

RT/duroid 5870 and 5880 laminates are easily cut, sheared and machined to shape. They are resistant to all solvents and reagents, hot or cold, normally used in etching printed circuits or in plating edges and holes.

Normally supplied as a laminate with electrodeposited copper of 1/4 to 2 ounces/ft.2 (8 to 70µm) on both sides, RT/duroid 5870 and 5880 composites can also be clad with rolled copper foil for more critical electrical applications. Cladding with aluminum, copper or brass plate may also be specified.

When ordering RT/duroid 5870 and 5880 laminates, it is important to specify dielectric thickness, tolerance, rolled or electrodeposited copper foil, and weight of copper foil required.

he information in this data sheet is intended to assist you in designing with Rogers' circuit material laminates. It is not intended to and does not create any warranties express or implied, including any warranty of merchantability or fitness for a particular purpose or that the results shown on this data sheet will be achieved by a user for a particular purpose. The user should determine the suitability of Rogers' circuit material laminates for each application.

Telephone: 301-631-1579 Fax: 301-662-2029 Email: sales@planarmonolithics.com

CONFIDENTIAL AND PROPRIETORY

PLANAR MONOLITHICS INDUSTRIES, INC. 7311-G GROVE RD., FREDERICK MD.21704 TEL: 301-631-1579 FAX: 301-662-2029

URL: WWW.PLANARMONOLITHICS.COM SALES@PLANARMONOLITHICS.COM **ISO 9001:2000 CERTIFIED**

PROPERTY		TYPICAL VALUE						DIRECTION	UNITS	CONDITION	TEST METHOD	
FROFE	RT/duroid® 5870			RT/duroid 5880			DIRECTION	UNIIS	CONDITION	TEST METHOD		
Dielectric Constant, e _p			2.3 2.33 ± 0.0		2.20 2.20 ± 0.02 spec.			Z Z		C24/23/50 C24/23/50	1 MHz IPC-TM-650, 2.5.5.3 10 GHz IPC-TM-2.5.5.5	
Dissipation Factor, fan ö		0.0005 0.0012			0.0004 0.0009			Z Z		C24/23/50 C24/23/50	1 MHz IPC-TM-650, 2.5.5.3 10 GHz IPC-TM-2.5.5.5	
Thermal Coefficient of $\epsilon_{_{\! f}}$			-11	5	-125			ppm/°C	-50 - 150°C	IPC-TM-650, 2.5.5.5		
Volume Resisti	vity		2 X 1	107	2 X 10 ⁷		Z	Mohm cm	C96/35/90	ASTM D257		
Surface Resistiv	-	2 X 10 ⁸		3 X 10 ^y		Z	Mohm	C/96/35/90	ASTM D257			
	1980	Test a	t 23°C	Test at 100°C	Test at 23°C Test at 100°C			100000000000000000000000000000000000000				
Tensile Modulu	4	1300	(189)	490 (71)	1070 (156) 450 (65)		х					
		1280	0 (185	430 (63)	860 (125)	13-20 V 23-16-24 V		Y	MPa (kpsi)			
AG	200000000	.50	(7.3)	34 (4.8)	29 (4.2)	20	(2.9)	х		A	ASTM D638	
ul	limate stress	42	(6.1)	34 (4.8)	27 (3.9)	18	(2.6)	٧				
	s va vi	9	v.a	8.7	6.0		.2	x	742	5.		
ul	fimate strain	9	V.8	8.6	4.9 5.8		Y	%				
	Ī	1210	(176)	680 (99)	710 (103)	500	(73)	x		† †		
Compressive A	Aodulus	1560 (198) 860 (125)		710 (103)	500	(73)	Y					
	ĵ	903 (120)		520 (76)	940 (136)	670	(97)	2				
	Ī.	30	(4.4)	23 (3.4)	27 (3.9)	(3.9) 22 (3.2)		X	MPa (kpsi)		ASTM D695	
ul	timate stress	37	(5.3)	25 (3.7)	29 (5.3) 21 (3.		(3.1)	Y				
		54	(7.8)	37 (5.3)	52 (7.5)	43 (6.3)		Z]			
		4.0 4.3		4.3	8.5 8.4		X					
ul	timate strain	a	1.3	3.3	7.7 7.8		.6	Y	%			
			1.7	8.5	12.5	17.6		ı		11 332		
Deformation Ut Test at 150°C	nder Load,	>260 (>500) 0.96 (0.23)			1.0 >260 (>500) 0.96 (0.23		Z	%	24hr/14 MPa (2 Kpsi)	ASTM D621		
Heat Distortion Temperature							X.Y	°C (°F)	1.82 MPa (264 psi)	ASTM D648		
Specific Heat								J/g/K		Calculated		
Thickness 0.31" Moisture (0.8mm)		0.9 (0.02)			0.9 (0.02)			mg (%)	D24/23	ASTM D570		
Absorption -	0.62" (1.6mm)		13 (0.	015)	13	(0.015			MATERIAL S		\$100,000 1 00.50	
Thermal Condu	etivity	. 3	0.2	2	0.20		Z	W/m/K	. 3	ASTM C518		
		×	Y	ı	×	Y	ı				and the second	
		-5.0	-5.5	-11.6	-6.1	-8.7	-18,7	1		-100°C		
		-0.6	-0.9	-4.0	-0.9	-1,9	-6.9	1		15	ASTM D3386 (10K/min)	
Thermal Expansion		-0.3	-0.4	-2.6	-0.5	-0.9	4.5		mm/m	25	(Values given are total	
		0.7	0.9	7.5	1.1	1.5	8.7			75	change from a base tem perature of 35°C)	
		1,8	2.2	22.0	2.3	3.2	28.3			150		
		3.4	4.0	58.9	3,8	5.5	69.5		1	250		
Td		500			500				°C TGA	5.	ASTM D3850	
Density	i	2.2			e e	2.2				8 8	ASTM D792	
Copper Peel		20.8 (3.7)			22.8 (4.0)				pli (N/mm)	after solder float	IPC-TM-650 2.4.8	
Flammability	1		94V	-0	ç	4V-0					UL	
Lead-Free Process Compatible			Ye	5		Yes						

³¹ unit given first with other frequently used units in parentheses. References: Internal TR's 1430, 2224, 2854. Test were at 23°C unless otherwise noted.

STANDARD THICKNESS:	STANDARD PANEL SIZE:	STANDARD COPPER CLADDING:		
0.005" (0.127mm), 0.031" (0.787mr 0.010" (0.254mm), 0.062" (1.575mr 0.015" (0.381mm), 0.125" (3.175mr 0.020" (0.508mm)	18" X 24" (457 X 610mm)	½ oz. (8 μm) electrodeposited copper fail. ½ oz. (17μm), 1 oz. (35μm), 2 oz. (70μm) electrodeposited and rolled copper fail.		

The information in this data sheet is intended to assist you in designing with Rogers' circuit material laminates. It is not intended to and does not create any warranties express or implied, including any warranty of merchantability or filness for a particular purpose or that the results shown on this data sheet will be achieved by a user for a particular purpose. The user should determine the suitability of Rogers' circuit material laminates for each application.

These commodities, technology and software are exported from the United States in accordance with the Export Administration regulations, Diversion contrary to U.S. law prohibited.

RT/duroid and DUROID are licensed trademarks of Rogers Corporation.

© 1989, 1994, 1995, 1999, 2002, 2005, 2006 Rogers Corporation, Printed in U.S.A. All rights reserved. Revised 11/06 0696-1106-0.5CC **Publication #92-101**

CONFIDENTIAL AND PROPRIETORY

PLANAR MONOLITHICS INDUSTRIES, INC. 7311-G GROVE RD., FREDERICK MD.21704

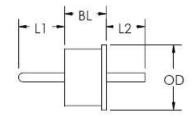
TEL: 301-631-1579 FAX: 301-662-2029

URL: WWW.PLANARMONOLITHICS.COM SALES@PLANARMONOLITHICS.COM

ISO 9001:2000 CERTIFIED

SPECIAL HERMETIC PRODUCTS, INC.

BULLETIN# 100, Rev. L PAGE# 1 of 3


Hi-Rel By Design

39 Souhegan Street - P.O. Box 269, Wilton, New Hampshire 03086 TEL (603) 654-2002 FAX (603) 654-2533

email: sales@shp-seals.com - website: www.shp-seals.com

HERMETIC FEEDTHRUS

PATENTED US Patent No. 4,841,101 Canada Patent No. 1,318,371

ALUMINUM COMPATIBLE

Designed specifically for use in aluminum housings, our feedthrus will provide highly reliable hermetic sealing in cyclic military and processing temperature environments, when installed in accordance with recommended application data. Our feedthrus will also minimize assembly time and enhance solder joint quality.

				STAI	NDARD:	SEALS (1) (7)			
PART NO.			OTHER	DIMENSIONS	fc	MATERIAL			
SERIES	L1 ⁽⁴⁾ ±.005	L2(4) (8) ±.005	PLATING CODE (2) (3)	OD +.001 002	BL ±.002	PIN DIA. RF ±.0005 DC ±.0015	GHz	GLASS Corning or Equiv.	FERRULE & PIN
50 Ω (4) SHP8612 SHP9815 SHP98B12 SHP1115 SHP1218 SHP1520 SHP1536/20	xxxR xxxR xxxR xxxR xxxR xxxR xxxR	XXX XXX XXX XXX XXX XXX	01 01 01 01 01 01	.086 .098 .098 .110 .120 .158	.062 .062 .062 .060 .060 .060	.012 .015 .012 .015 .018 .020 .036/.020	45 40 49 40 30 23 23	7070 7070 7070 7070 7070 7070 7052 7052	ASTM-F15
DC (5) SHP60xx SHP74Bxx SHP74Cxx SHP74Dxx SHP78Axx SHP98Axx SHP13xx	XXX XXX XXX XXX XXX	xxx xxx xxx xxx xxx xxx	01 02 02 02 02 02 02	.060 .074 .074 .074 .098 .138	.050 .073 .062 .040 .062 .110	.015, .018, .020, .021 .020, .025 .020, .025 .020, .025 .025, .030 .030, .040, .050	N/A	7052 9013 9013 9013 9013 9013	ASTM-F15 STEEL STEEL STEEL STEEL STEEL

Example Part No: SHP9815-075R-125-01

NOTES: (1) Seals of any desired geometry can be provided. Contact us for your special requirements.

- (2) Standard plating for ASTM-F15 is 50 microinches minimum GOLD per MIL-G-45204, Type III, Grade A over 100-200 microinches NICKEL per MIL-C-26074. Plating thickness is measured on pin.
- (3) Standard plating for STEEL is 50 microinches minimum GOLD per MIL-G-45204, Type III, Grade A over 200-400 microinches NICKEL per MIL-C-26074. Plating thickness is measured on pin.
- (4) Standard pin termination is straight-cut (radius on L1 end on 50 Ω). Special pin terminations are also available (see page 3).
- (5) Insert desired pin diameter in thousandths, in series.
- (6) RF feedthrus are stocked with various standard L1 lead lengths for quicker delivery. Contact us for details.
- (7) See Bulletin 200 for solder preforms.
- (8) ±.003 on 50 Ω

All dimensions are inches.