PMI MODEL: LM-0518-10-1W-SHS-1-SFM IS A HIGH SPEED, HIGH POWER HARD DIODE-LIMITER. IT OPERATES OVER THE FREQUENCY RANGE OF 0.5 TO 18GHz.

June 23, 2019

Designed By: PMI Engineering

Tested and Reported By:
Alfredo Lopez
Typical Characteristics
ON
LM-0518-10-1W-SHS-1-SMF

Outline Drawing

DESCRIPTION
PMI MODEL: LM-0518-10-1W-SHS-1-SFM IS A HIGH SPEED, HIGH POWER HARD DIODE–LIMITER. IT OPERATES OVER THE FREQUENCY RANGE OF 0.5 TO 18 GHz

SPECIFICATIONS
- FREQUENCY RANGE: 0.5 TO 18 GHz
- INSERTION LOSS
 @-20dBm INPUT: 2.0dB MAX, 1.5dB TYP
 VSWR @-20dBm INPUT: 2.0:1 MAX, 1.5:1 TYP
- LEAKAGE @ 1 WATT
 CW INPUT: +14dBm MAX, +10dBm TYP
 SPEED: 10ns
- INPUT POWER:
 1 WATT CW, 100 WATTS PEAK,
 1µs PULSE, 0.1% DUTY CYCLE
- LIMITING THRESHOLD: +10dBm TYP
- CONNECTORS: SMA (M/F)
- FINISH: PAINTED BLUE
- SIZE: 0.5” X 0.5” X 0.22”

ENVIRONMENTAL RATINGS
- TEMPERATURE: -54°C TO +85°C (OPERATING)
 -85°C TO +125°C (STORAGE)
- HUMIDITY: MIL-STD-202F, METHOD 1038 COND. B
- SHOCK: MIL-STD-202F, METHOD 2138 COND. B
- VIBRATION: MIL-STD-202F, METHOD 2040 COND. B
- ALTITUDE: MIL-STD-202F, METHOD 105C COND. B
- TEMPERATURE CYCLE: MIL-STD-202F, METHOD 107D COND. A

NOTE: SPECIFICATIONS WILL VARY OVER OPERATING TEMPERATURE
NOTE: THE ABOVE SPECIFICATIONS ARE SUBJECT TO CHANGE OR REVISE.
Technical Specifications

<table>
<thead>
<tr>
<th>TEST. ITEM NO</th>
<th>PARAMETERS</th>
<th>SPECIFIED VALUE</th>
<th>TEST RESULTS</th>
<th>QA QC</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Frequency Range:</td>
<td>0.5 GHz TO 18GHz</td>
<td>0.5 GHz TO 18GHz</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Insertion Loss @ -20dBm Input:</td>
<td>2.0 dB Max 1.5 dB Typ</td>
<td>1.93 dB (See Plot)</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>VSWR @ -20 dBm Input:</td>
<td>2.0:1 Max 1.5:1 Typ</td>
<td>Input 1.69:1 Output:1.70:1 (See Plot)</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Leakage @ 1 Watt CW Input:</td>
<td>+14dBm Max +10dBm Typ</td>
<td>13dBm (See Graphs)</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Speed:</td>
<td>10ns</td>
<td>8.79ns (See Plots)</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Input Power:</td>
<td>1 Watt CW, 100 Watts Peak, 1us Pulse, 0.1% Duty Cycle, Derated to 20% @ 125°C</td>
<td>Pass (See Graphs)</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Limiting Threshold:</td>
<td>+10dBm Typ</td>
<td>Min. +5dBm Max. +7dBm (See Graphs)</td>
<td></td>
</tr>
</tbody>
</table>
(J1-J2) Insertion Loss and Return loss
Graph High Power Test (CW)
Typical Characteristics

ON
LM-0518-10-1W-SHS-1-SMF

Data High Power Test (CW)

<table>
<thead>
<tr>
<th>POWER INPUT (dBm)</th>
<th>POWER OUTPUT (dBm)</th>
<th>LOSS</th>
<th>POWER INPUT (dBm)</th>
<th>POWER OUTPUT (dBm)</th>
<th>LOSS</th>
<th>POWER INPUT (dBm)</th>
<th>POWER OUTPUT (dBm)</th>
<th>LOSS</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>-0.69</td>
<td>0.69</td>
<td>0</td>
<td>-0.97</td>
<td>0.97</td>
<td>0</td>
<td>-1.88</td>
<td>1.88</td>
</tr>
<tr>
<td>1</td>
<td>0.23</td>
<td>0.71</td>
<td>1</td>
<td>-0.05</td>
<td>1.05</td>
<td>1</td>
<td>-1.05</td>
<td>2.05</td>
</tr>
<tr>
<td>2</td>
<td>1.36</td>
<td>0.64</td>
<td>2</td>
<td>0.86</td>
<td>1.14</td>
<td>2</td>
<td>-0.20</td>
<td>2.20</td>
</tr>
<tr>
<td>3</td>
<td>2.30</td>
<td>0.70</td>
<td>3</td>
<td>2.71</td>
<td>1.29</td>
<td>3</td>
<td>0.58</td>
<td>2.42</td>
</tr>
<tr>
<td>4</td>
<td>3.15</td>
<td>0.85</td>
<td>4</td>
<td>4.24</td>
<td>1.51</td>
<td>4</td>
<td>1.28</td>
<td>2.72</td>
</tr>
<tr>
<td>5</td>
<td>3.88</td>
<td>1.12</td>
<td>5</td>
<td>5.06</td>
<td>1.94</td>
<td>5</td>
<td>2.14</td>
<td>2.86</td>
</tr>
<tr>
<td>6</td>
<td>4.43</td>
<td>1.51</td>
<td>6</td>
<td>6.39</td>
<td>2.61</td>
<td>6</td>
<td>2.35</td>
<td>3.65</td>
</tr>
<tr>
<td>7</td>
<td>4.97</td>
<td>2.03</td>
<td>7</td>
<td>7.63</td>
<td>3.37</td>
<td>7</td>
<td>2.73</td>
<td>4.27</td>
</tr>
<tr>
<td>8</td>
<td>5.37</td>
<td>2.63</td>
<td>8</td>
<td>8.84</td>
<td>4.16</td>
<td>8</td>
<td>3.03</td>
<td>4.97</td>
</tr>
<tr>
<td>9</td>
<td>5.71</td>
<td>3.29</td>
<td>9</td>
<td>10.02</td>
<td>4.98</td>
<td>9</td>
<td>3.27</td>
<td>5.73</td>
</tr>
<tr>
<td>10</td>
<td>6.00</td>
<td>4.00</td>
<td>10</td>
<td>11.19</td>
<td>5.81</td>
<td>10</td>
<td>3.48</td>
<td>6.52</td>
</tr>
<tr>
<td>11</td>
<td>6.27</td>
<td>4.73</td>
<td>11</td>
<td>12.37</td>
<td>6.63</td>
<td>11</td>
<td>3.65</td>
<td>7.35</td>
</tr>
<tr>
<td>12</td>
<td>6.53</td>
<td>5.47</td>
<td>12</td>
<td>14.56</td>
<td>7.44</td>
<td>12</td>
<td>3.81</td>
<td>8.19</td>
</tr>
<tr>
<td>13</td>
<td>6.78</td>
<td>6.22</td>
<td>13</td>
<td>16.75</td>
<td>8.25</td>
<td>13</td>
<td>3.95</td>
<td>9.05</td>
</tr>
<tr>
<td>14</td>
<td>7.04</td>
<td>6.96</td>
<td>14</td>
<td>18.93</td>
<td>9.07</td>
<td>14</td>
<td>4.07</td>
<td>9.93</td>
</tr>
<tr>
<td>15</td>
<td>7.30</td>
<td>7.70</td>
<td>15</td>
<td>21.12</td>
<td>9.88</td>
<td>15</td>
<td>4.19</td>
<td>10.81</td>
</tr>
<tr>
<td>16</td>
<td>7.58</td>
<td>8.42</td>
<td>16</td>
<td>23.31</td>
<td>10.69</td>
<td>16</td>
<td>4.30</td>
<td>11.70</td>
</tr>
<tr>
<td>17</td>
<td>7.86</td>
<td>9.12</td>
<td>17</td>
<td>25.50</td>
<td>11.50</td>
<td>17</td>
<td>4.40</td>
<td>12.60</td>
</tr>
<tr>
<td>18</td>
<td>8.13</td>
<td>9.81</td>
<td>18</td>
<td>27.69</td>
<td>12.31</td>
<td>18</td>
<td>4.50</td>
<td>13.50</td>
</tr>
<tr>
<td>19</td>
<td>8.52</td>
<td>10.48</td>
<td>19</td>
<td>29.89</td>
<td>13.11</td>
<td>19</td>
<td>4.52</td>
<td>14.48</td>
</tr>
<tr>
<td>20</td>
<td>8.87</td>
<td>11.13</td>
<td>20</td>
<td>32.08</td>
<td>13.89</td>
<td>20</td>
<td>4.52</td>
<td>15.48</td>
</tr>
<tr>
<td>25</td>
<td>10.50</td>
<td>14.50</td>
<td>25</td>
<td>35.27</td>
<td>16.73</td>
<td>25</td>
<td>4.60</td>
<td>20.40</td>
</tr>
<tr>
<td>26</td>
<td>11.00</td>
<td>15.00</td>
<td>26</td>
<td>37.47</td>
<td>19.53</td>
<td>26</td>
<td>4.68</td>
<td>21.32</td>
</tr>
<tr>
<td>27</td>
<td>11.60</td>
<td>15.20</td>
<td>27</td>
<td>39.66</td>
<td>20.34</td>
<td>27</td>
<td>4.80</td>
<td>22.20</td>
</tr>
<tr>
<td>28</td>
<td>12.00</td>
<td>16.00</td>
<td>28</td>
<td>41.85</td>
<td>21.15</td>
<td>28</td>
<td>5.00</td>
<td>23.00</td>
</tr>
<tr>
<td>29</td>
<td>12.56</td>
<td>16.42</td>
<td>29</td>
<td>44.04</td>
<td>21.99</td>
<td>29</td>
<td>5.22</td>
<td>23.78</td>
</tr>
<tr>
<td>30</td>
<td>13.00</td>
<td>17.00</td>
<td>30</td>
<td>46.24</td>
<td>22.86</td>
<td>30</td>
<td>5.30</td>
<td>24.70</td>
</tr>
</tbody>
</table>

+25°C

P1DB

Page 6 of 13
7311-F Grove Road Frederick, MD 21704 USA Phone: (301)662-5019 Fax: (301)662-1731
Email: sales@pmi-rf.com
Graph High Power Test (CW)

-54 °C

Plot of Power Output (dBm) vs. Power Input (dBm) at different frequencies: 500 MHz, 8 GHz, and 18 GHz.
Data High Power Test (CW)

<table>
<thead>
<tr>
<th>Power Input (dBm)</th>
<th>Power Output (dBm)</th>
<th>Loss</th>
<th>Power Input (dBm)</th>
<th>Power Output (dBm)</th>
<th>Loss</th>
<th>Power Input (dBm)</th>
<th>Power Output (dBm)</th>
<th>Loss</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>-0.72</td>
<td>0.72</td>
<td>0</td>
<td>-0.78</td>
<td>0.78</td>
<td>0</td>
<td>-1.37</td>
<td>1.37</td>
</tr>
<tr>
<td>1</td>
<td>0.27</td>
<td>0.73</td>
<td>1</td>
<td>0.19</td>
<td>0.81</td>
<td>1</td>
<td>-0.47</td>
<td>1.47</td>
</tr>
<tr>
<td>2</td>
<td>1.36</td>
<td>0.64</td>
<td>2</td>
<td>1.16</td>
<td>0.84</td>
<td>2</td>
<td>0.47</td>
<td>1.53</td>
</tr>
<tr>
<td>3</td>
<td>2.34</td>
<td>0.66</td>
<td>3</td>
<td>2.07</td>
<td>0.93</td>
<td>3</td>
<td>1.38</td>
<td>1.62</td>
</tr>
<tr>
<td>4</td>
<td>3.28</td>
<td>0.72</td>
<td>4</td>
<td>2.94</td>
<td>1.06</td>
<td>4</td>
<td>2.22</td>
<td>1.78</td>
</tr>
<tr>
<td>5</td>
<td>4.12</td>
<td>0.88</td>
<td>5</td>
<td>3.73</td>
<td>1.27</td>
<td>5</td>
<td>2.95</td>
<td>2.05</td>
</tr>
<tr>
<td>6</td>
<td>4.82</td>
<td>1.18</td>
<td>6</td>
<td>4.29</td>
<td>1.71</td>
<td>6</td>
<td>3.64</td>
<td>2.36</td>
</tr>
<tr>
<td>7</td>
<td>5.37</td>
<td>1.63</td>
<td>7</td>
<td>4.43</td>
<td>2.51</td>
<td>7</td>
<td>3.98</td>
<td>3.02</td>
</tr>
<tr>
<td>8</td>
<td>5.82</td>
<td>2.18</td>
<td>8</td>
<td>4.65</td>
<td>3.35</td>
<td>8</td>
<td>4.32</td>
<td>3.68</td>
</tr>
<tr>
<td>9</td>
<td>6.18</td>
<td>2.82</td>
<td>9</td>
<td>4.80</td>
<td>4.20</td>
<td>9</td>
<td>4.57</td>
<td>4.43</td>
</tr>
<tr>
<td>10</td>
<td>6.49</td>
<td>3.51</td>
<td>10</td>
<td>4.95</td>
<td>5.05</td>
<td>10</td>
<td>4.76</td>
<td>5.24</td>
</tr>
<tr>
<td>11</td>
<td>6.76</td>
<td>4.24</td>
<td>11</td>
<td>5.12</td>
<td>5.88</td>
<td>11</td>
<td>4.92</td>
<td>6.08</td>
</tr>
<tr>
<td>12</td>
<td>7.02</td>
<td>4.98</td>
<td>12</td>
<td>5.30</td>
<td>6.70</td>
<td>12</td>
<td>5.05</td>
<td>6.95</td>
</tr>
<tr>
<td>13</td>
<td>7.27</td>
<td>5.73</td>
<td>13</td>
<td>5.49</td>
<td>7.51</td>
<td>13</td>
<td>5.17</td>
<td>7.83</td>
</tr>
<tr>
<td>14</td>
<td>7.51</td>
<td>6.49</td>
<td>14</td>
<td>5.67</td>
<td>8.33</td>
<td>14</td>
<td>5.27</td>
<td>8.73</td>
</tr>
<tr>
<td>15</td>
<td>7.77</td>
<td>7.23</td>
<td>15</td>
<td>5.85</td>
<td>9.15</td>
<td>15</td>
<td>5.36</td>
<td>9.64</td>
</tr>
<tr>
<td>16</td>
<td>8.05</td>
<td>7.95</td>
<td>16</td>
<td>6.04</td>
<td>9.96</td>
<td>16</td>
<td>5.44</td>
<td>10.56</td>
</tr>
<tr>
<td>17</td>
<td>8.35</td>
<td>8.65</td>
<td>17</td>
<td>6.22</td>
<td>10.78</td>
<td>17</td>
<td>5.51</td>
<td>11.43</td>
</tr>
<tr>
<td>18</td>
<td>8.65</td>
<td>9.35</td>
<td>18</td>
<td>6.42</td>
<td>11.58</td>
<td>18</td>
<td>5.58</td>
<td>12.42</td>
</tr>
<tr>
<td>19</td>
<td>8.96</td>
<td>10.04</td>
<td>19</td>
<td>6.62</td>
<td>12.38</td>
<td>19</td>
<td>5.60</td>
<td>13.40</td>
</tr>
<tr>
<td>20</td>
<td>9.31</td>
<td>10.69</td>
<td>20</td>
<td>6.83</td>
<td>13.17</td>
<td>20</td>
<td>5.60</td>
<td>14.40</td>
</tr>
<tr>
<td>25</td>
<td>10.42</td>
<td>14.58</td>
<td>25</td>
<td>6.95</td>
<td>18.05</td>
<td>25</td>
<td>5.80</td>
<td>19.20</td>
</tr>
<tr>
<td>26</td>
<td>10.98</td>
<td>15.02</td>
<td>26</td>
<td>7.05</td>
<td>18.95</td>
<td>26</td>
<td>6.00</td>
<td>20.00</td>
</tr>
<tr>
<td>27</td>
<td>11.20</td>
<td>15.80</td>
<td>27</td>
<td>7.22</td>
<td>19.78</td>
<td>27</td>
<td>6.18</td>
<td>20.82</td>
</tr>
<tr>
<td>28</td>
<td>11.80</td>
<td>16.20</td>
<td>28</td>
<td>7.40</td>
<td>20.60</td>
<td>28</td>
<td>6.22</td>
<td>21.78</td>
</tr>
<tr>
<td>29</td>
<td>12.05</td>
<td>16.95</td>
<td>29</td>
<td>7.55</td>
<td>21.45</td>
<td>29</td>
<td>6.40</td>
<td>22.60</td>
</tr>
<tr>
<td>30</td>
<td>12.88</td>
<td>17.12</td>
<td>30</td>
<td>7.80</td>
<td>22.20</td>
<td>30</td>
<td>6.58</td>
<td>23.42</td>
</tr>
</tbody>
</table>

1W
Graph High Power Test (CW)
Typical Characteristics

ON

LM-0518-10-1W-SHS-1-SMF

Data High Power Test (CW)

<table>
<thead>
<tr>
<th>500 MHz</th>
<th>8 GHz</th>
<th>18 GHz</th>
</tr>
</thead>
<tbody>
<tr>
<td>POWER INPUT (dBm)</td>
<td>POWER OUTPUT (dBm)</td>
<td>LOSS</td>
</tr>
<tr>
<td>0</td>
<td>-0.74</td>
<td>0.74</td>
</tr>
<tr>
<td>1</td>
<td>0.21</td>
<td>0.79</td>
</tr>
<tr>
<td>2</td>
<td>1.21</td>
<td>0.79</td>
</tr>
<tr>
<td>3</td>
<td>2.03</td>
<td>0.97</td>
</tr>
<tr>
<td>4</td>
<td>2.77</td>
<td>1.23</td>
</tr>
<tr>
<td>5</td>
<td>3.39</td>
<td>1.61</td>
</tr>
<tr>
<td>6</td>
<td>4.30</td>
<td>1.70</td>
</tr>
<tr>
<td>7</td>
<td>4.60</td>
<td>2.40</td>
</tr>
<tr>
<td>8</td>
<td>4.80</td>
<td>3.20</td>
</tr>
<tr>
<td>9</td>
<td>5.05</td>
<td>3.95</td>
</tr>
<tr>
<td>10</td>
<td>5.34</td>
<td>4.66</td>
</tr>
<tr>
<td>11</td>
<td>5.62</td>
<td>5.38</td>
</tr>
<tr>
<td>12</td>
<td>5.89</td>
<td>6.11</td>
</tr>
<tr>
<td>13</td>
<td>6.16</td>
<td>6.84</td>
</tr>
<tr>
<td>14</td>
<td>6.43</td>
<td>7.57</td>
</tr>
<tr>
<td>15</td>
<td>6.71</td>
<td>8.29</td>
</tr>
<tr>
<td>16</td>
<td>7.00</td>
<td>8.90</td>
</tr>
<tr>
<td>17</td>
<td>7.32</td>
<td>9.68</td>
</tr>
<tr>
<td>18</td>
<td>7.64</td>
<td>10.36</td>
</tr>
<tr>
<td>19</td>
<td>8.00</td>
<td>11.00</td>
</tr>
<tr>
<td>20</td>
<td>8.37</td>
<td>11.63</td>
</tr>
<tr>
<td>21</td>
<td>8.73</td>
<td>12.29</td>
</tr>
<tr>
<td>22</td>
<td>9.00</td>
<td>12.95</td>
</tr>
<tr>
<td>23</td>
<td>9.28</td>
<td>13.60</td>
</tr>
<tr>
<td>24</td>
<td>9.55</td>
<td>14.24</td>
</tr>
<tr>
<td>26</td>
<td>10.00</td>
<td>15.50</td>
</tr>
</tbody>
</table>

P1DB
Graph Peak Power Test (Pulsed)

Pulsed 1us / 1KHz / DC 0.1%

<table>
<thead>
<tr>
<th>Power Input (dBm)</th>
<th>Power Output (dBm)</th>
<th>Loss</th>
<th>Power Input (dBm)</th>
<th>Power Output (dBm)</th>
<th>Loss</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>3.50</td>
<td>1.50</td>
<td>5</td>
<td>2.80</td>
<td>2.20</td>
</tr>
<tr>
<td>10</td>
<td>4.50</td>
<td>5.50</td>
<td>10</td>
<td>3.50</td>
<td>6.50</td>
</tr>
<tr>
<td>15</td>
<td>5.76</td>
<td>3.22</td>
<td>15</td>
<td>4.20</td>
<td>10.80</td>
</tr>
<tr>
<td>20</td>
<td>6.88</td>
<td>13.12</td>
<td>20</td>
<td>4.40</td>
<td>15.60</td>
</tr>
<tr>
<td>25</td>
<td>7.80</td>
<td>17.20</td>
<td>25</td>
<td>5.22</td>
<td>19.78</td>
</tr>
<tr>
<td>30</td>
<td>8.50</td>
<td>21.50</td>
<td>30</td>
<td>5.50</td>
<td>24.50</td>
</tr>
<tr>
<td>35</td>
<td>8.88</td>
<td>26.32</td>
<td>35</td>
<td>6.00</td>
<td>25.00</td>
</tr>
<tr>
<td>40</td>
<td>9.65</td>
<td>30.35</td>
<td>40</td>
<td>6.20</td>
<td>33.80</td>
</tr>
<tr>
<td>45</td>
<td>11.44</td>
<td>33.56</td>
<td>45</td>
<td>6.50</td>
<td>36.50</td>
</tr>
<tr>
<td>46</td>
<td>11.50</td>
<td>34.40</td>
<td>46</td>
<td>6.70</td>
<td>35.30</td>
</tr>
<tr>
<td>47</td>
<td>12.00</td>
<td>35.00</td>
<td>47</td>
<td>6.84</td>
<td>40.16</td>
</tr>
<tr>
<td>48</td>
<td>12.22</td>
<td>35.78</td>
<td>48</td>
<td>7.00</td>
<td>4100</td>
</tr>
<tr>
<td>49</td>
<td>12.30</td>
<td>36.70</td>
<td>49</td>
<td>7.33</td>
<td>4167</td>
</tr>
</tbody>
</table>
| **50** | **12.58** | **37.42**| **50** | **7.60** | **4240**| 100W

Typical Characteristics
ON
LM-0518-10-1W-SHS-1-SMF
Typical Characteristics
ON
LM-0518-10-1W-SHS-1-SMF

Rise Time (7.99ns)
Pulsed PW 1us - PRF 1KHz – DC 0.1%
5 ns Per Div.

Fall Time (8.79ns)
Pulsed PW 1us - PRF 1KHz – DC 0.1%
10ns Per Div.
Full Pulse
Pulsed PW 1us - PRF 1KHz – DC 0.1%
500 ns Per Div.