

Characteristics For PS-1G4G-180-A-SFF

February 24, 2011

7311-F Grove Road Frederick, MD 21704 USA Phone: (301)662-5019 Fax: (301)662-1731 email: sales@pmi-rf.com

Insertion and Return Loss with 0 V Differential

Insertion and Return Loss with 2 V Differential

Insertion and Return Loss with 4 V Differential

Insertion and Return Loss with 6 V Differential

Insertion and Return Loss with 8 V Differential

Insertion and Return Loss with 10 V Differential

Insertion and Return Loss with 12 V Differential

Insertion and Return Loss with 14 V Differential

Insertion and Return Loss with 16 V Differential

Insertion and Return Loss with 18 V Differential

Insertion and Return Loss with 20 V Differential

Insertion and Return Loss with 22 V Differential

Phase Shift with 2 V Differential

*The phase setting on the VNA increases from 0° to 180° . Once the phase is past 180° it is plotted as -180° and then becomes less negative until it reaches 0° again (360° shift). For example 90° is 90° , 180° and -180° are 180° , -90° is 270° , and -1° is a 359° shift.

Phase Shift with 4 V Differential

^{*}The phase setting on the VNA increases from 0° to 180°. Once the phase is past 180° it is plotted as -180° and then becomes less negative until it reaches 0° again (360° shift). For example 90° is 90°, 180° and -180° are 180°, -90° is 270°, and -1° is a 359° shift.

Phase Shift with 6 V Differential

*The phase setting on the VNA increases from 0° to 180° . Once the phase is past 180° it is plotted as -180° and then becomes less negative until it reaches 0° again (360° shift). For example 90° is 90° , 180° and -180° are 180° , -90° is 270° , and -1° is a 359° shift.

Phase Shift with 8 V Differential

*The phase setting on the VNA increases from 0° to 180°. Once the phase is past 180° it is plotted as -180° and then becomes less negative until it reaches 0° again (360° shift). For example 90° is 90°, 180° and -180° are 180°, -90° is 270°, and -1° is a 359° shift.

Phase Shift with 10 V Differential

*The phase setting on the VNA increases from 0° to 180°. Once the phase is past 180° it is plotted as -180° and then becomes less negative until it reaches 0° again (360° shift). For example 90° is 90°, 180° and -180° are 180°, -90° is 270°, and -1° is a 359° shift.

Phase Shift with 12 V Differential

*The phase setting on the VNA increases from 0° to 180°. Once the phase is past 180° it is plotted as -180° and then becomes less negative until it reaches 0° again (360° shift). For example 90° is 90°, 180° and -180° are 180°, -90° is 270°, and -1° is a 359° shift.

Phase Shift with 14 V Differential

^{*}The phase setting on the VNA increases from 0° to 180°. Once the phase is past 180° it is plotted as -180° and then becomes less negative until it reaches 0° again (360° shift). For example 90° is 90°, 180° and -180° are 180°, -90° is 270°, and -1° is a 359° shift.

Phase Shift with 16 V Differential

^{*}The phase setting on the VNA increases from 0° to 180°. Once the phase is past 180° it is plotted as -180° and then becomes less negative until it reaches 0° again (360° shift). For example 90° is 90°, 180° and -180° are 180°, -90° is 270°, and -1° is a 359° shift.

Phase Shift with 18 V Differential

^{*}The phase setting on the VNA increases from 0° to 180°. Once the phase is past 180° it is plotted as -180° and then becomes less negative until it reaches 0° again (360° shift). For example 90° is 90°, 180° and -180° are 180°, -90° is 270°, and -1° is a 359° shift.

Phase Shift with 20 V Differential

^{*}The phase setting on the VNA increases from 0° to 180°. Once the phase is past 180° it is plotted as -180° and then becomes less negative until it reaches 0° again (360° shift). For example 90° is 90°, 180° and -180° are 180°, -90° is 270°, and -1° is a 359° shift.

Phase Shift with 22 V Differential

*The phase setting on the VNA increases from 0° to 180° . Once the phase is past 180° it is plotted as -180° and then becomes less negative until it reaches 0° again (360° shift). For example 90° is 90° , 180° and -180° are 180° , -90° is 270° , and -1° is a 359° shift.